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FOREWORD

The 25th Conference on the Design of Experiments in Army Research,

Development and Testing (DOE) was held 17-19 October 1979 at the

U. S. Army Natick Research and Development Command in Natick,

Massachusetts. This was the second time in the history of these

conferences that this Army base has provided the facilities to conduct

one of these scientific meetings. The fourth conference In the series

was held here. At that time, the base was called the Quartermaster

Research and Engineering Center.

The original format for the DOE Conf rences, which are under the

auspices of the Army Mathematics St ring Committee (AMSC), was outlined

by the eminent statistician, Profe:s r Samuel S. Wilks, who served as

conference chairman until his death hrough these symposia the

AMSC hopes to Introduce and encourage the use of the latest statistical

and design techniques Into the research, development and testing

conducted by the Army's scientific and engineering personnel. It is

believed that this purpose can be best pursued by holding these meetings

at various government Installations throughout the country.

Several features in this year's agenda pointed out the special

significance of this, the Silver Anniversary of these meetings. The

program was dedicated to Dr. Francis G. Dressel, formerly Professor

of Mathematics at Duke University. For the past 25 years Dr. Dressel

has coordinated the conference programming and local arrangements,
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and has edited proceedings of this and other AMSC sponsored conferences.

The DOE Program Committee Invited Dr. Dressel's friends to Join In
expressing their appreciation for this loyal service. V

The Program was to begin with an address by Dr. Frank E. Grubbs,

formerly of the U. S. Army Ballistic Research Laboratory, and a

renowned statistician. His talk was entitled, "A Quarter Century

of Army Design of Experiments Conferences". This was to be followed

by an address entitled, "Summarizing the Results of a Series of

Experimentses to be given by Dr. William G. Cochran, Professor of

Statistics Emeritus, Harvard University. Unfortunately, both of

these gentlemen were unable to attend the conference. Their

addresses were read, respectively, by Dr. Dressel and Dr. Herman

Chernoff, Professor of Mathematics at the Massachusetts Institute

of Technology. (Dr. Grubbs was also unable to serve as Master of

Ceremonies at the banquet and to make the presentation of the Samuel

S. Wilks Memorial Medal. These duties were taken over by Dr. Robert

Launer of the Army Research Office.) The other invited speakers

and tjeir topics are noted below.

Speaker and Affiliation Title of Address

Mr. Al L. May DESIGNED EXPERIMENTS IN SENSORY
Pillsbury Research Labs TESTING

Dr. Ray E. Schafer COMPUTER AIDED HYPOTHESIS TFSTS -

Hughes Aircraft Company THE BIRNBAUM TEST

iv
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Professor Warren Stewart NEW ALGORITHMS FOR NONLINEAR LEAST
Mathematics Research Center SQUARES AND BAYESIAN PARAMETER
and University of Wisconsin ESTIMATION

Professor Marvin Zelen ETHICS AND STRATEGY IN THERAPEUTIC
Harvard School of Public INVESTIGATIONS
Sciences

The members of the AMSC take this opportunity to express their thanks

to the speakers and other research workers who participatod in the

meeting; to Colonel H. F. Penny, Commanding Officer of the U. S. Army

Natick Research and Development Command, for making available the

excellent facilities of his organization for the conference; and

* ,to Mr. Donald Kass who so ably handled the details of the local

"arrangements for this meeting. The AMSC Is making available most of

*, the papers presented at this meeting in the present form in order

to encourage wider use of modern statistical principles of the design

of experiments in research, development and testing work of concern

to the Army.
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THE TWNENTY-FIFTH ANNINVERSARY OF

THE CONFERENCES ON
THE DESIGN OF EUPERIMENTS IN

ARMY RESEARCH, DEVELOPMENTr AND TESTING

THIS PAMIPHLET CONTAINS THE NAMES OF INVITED SPEAKERS

SELECTED FROM THE PROGRAM4S OF

THE FIRST TWENTY-FIVE MEETINGS IN THIS SERIES

FOLLOWED BY A. LQT OF

RECIPIENTS OF THE WILK$ MEMORIAL AWARD

These Conferences Are Sponsored by

lhe Army Mathematics Steering Committee

U. S. Arm•y Research Office

Research Triangle Park, North Carolina
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CONFERENCES ON THE DESIGN OF EXPERIMENTS IN
ARMY RESEARCH, DEVELOPMENT AND TESTING

List of Invited Speakers at
he First Twenty-Five Neetings

First Conference: 19-21 October 1955, Diamond Ordnance Fuze
Laboratory and National Bureau of Standards

Profesuor W. 6. Cochran

THE PHILOSOPHY JNDERLYING THE DESIGN OF EXPERIMENJTS

Dr. Churchill Eisenhart
THE PRINCIPLE OF RANDIOMIZATION IN THE DESIGN OF EXPERIMENTS

Dr. 14. E. Terry
FINDING OPTIMUM CONDITIONS BY EXPERIMENTATION

Professor John Tukey (Chairman)
PANEL DISCUSSION ON HOW ADP WHERE VO STATISTICIANS FIT
IN, (THE OTHERS ON THIS PANEL WEREi MR. CUTHBERT DANIEL,
AS. BESSE DAV, DR. CHURCHILL EISENHART, DR. M. E, TERRY,
AND PROFESSOR S. S. WILKS).

Dr. W. J. Youden

DESIGN OF EXPERIMENTS IN INDUSTRIAL RESEARCH AND DEVELOPMENT

Second Conference: 17-19 October 1956, Diamond Ordnance Fuze

Laboratory and the National Bureau of Standards

Dr. C. A. Bennett

THE PREVESlGN PHASE OF LARGE SAMPLE EXPERIMENTS

Professor R. A. Bradley

RF.CENT kESEARCH IN STATISTICAL PROBLEMS IN SUBJECTIVE TESTING

Professor B. G. Greenberg
APPLICATION OF ORDER STATISTICS IN MEDICAL EXPERIMENTS

Professor G. E. Nicholson, Jr.

THE PLANNING OF EXPERIMENTS IN THE PRESENCE OF VARIATION/

Dr. M., B. Wilk

DERIVED LINEAR MOVELS IN THE ANALYSIS OF VARIAJNCE

Ik
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Dr. Jerome Cornfield

CKOICE OF ERROR IN THE DXSIGN OF EXPERIMENTS

Third Conference: 16-18 October 1957, Ciamond Ordnance Fuze Laboratory

and the National Bureau of Standards

Professor Benjamin Epstein
LIFE "rESTING

Sir k. A. Fisher
PRACTICAL PROBLEAS IN EXPERIMENTAL PESIGN

Professor H. 0. Hartley
CHANGES IN THE OUTLOOK OF STATISTICS BROUGHT ABOUT BV MODERN
COMPUTERS

Dr. A. W. Marshall

EXPERIMENTATION 8V SIMULATION AND MONTE CARLO

Fourth Conference: 22-24 October 1968, The Quartermaster Research
and Engineering Center, Natick

Mr. C. 1. Bliss

SOME STATISTICAL ASPECTS OF PREFERENCE STUDIES

Professor A. C. Cohen
SIMPLIFIED COMPUTATIONAL PROCEDURES FOR ESTIMATING PARAMETERS
OF A NORMAL DISTRIBUTION FROM RESTRICTED SAMPLES

Dr. A. W. Kimbell

ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING

Professor C. F. Kossack

THE AASHO ROAD TEST AS AN EXAMPLE OF LARGE SCALE TESTS

Mr. L. H. C. Tippett
STATISTICAL METHOVS APPLIED TO THE TFXTILE IPUSTY

xi
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Fifth Conference: 4-6 November 1959, The U. S. Arr Bio'logical
Warfare Laboratories, Ft. Detrick

Dr. Joseph Berkson

THE MEASURE OF DEATH

Dr. H. A. David
THE METHOD OF PAIREO COMPARISONS

Dr. D. B. DeLury
SAMPLING IN BIOLOGZCAL POPULATIONS
Dr. W. J. Dixon

MEDICAL HEALTH STATISTICS

Dr. N. E. Golovin
PREDICTION OF THE RELIABILITY OF COMPLEX SYSTEMS

Dr. Richard Weiss

THE ARMY RESEARCH AND DEVELOPMENT PROGRAM AS IT RELATES TO
THE CIVIL ECONOMY

Sixth Conference: 19-21 October 1960, The Ballistic Research
Laboratory

Dr. James R. Duffett
RELIABILITY

Professor F. J. Anscombe

EXAMINATION OF RESIDUALS

Dr. W. S. Connor
DEVELOPMENTS IN THE DESIGN OF EXPERIMENTS

Dr. J. E. Jackson
MULTIVARIATE ANALYSIS ILLUSTRATED BY NIKE-HERCULESt
1. SEPARATION OF PRODUCT AND MEASUREMENT VARIABILITY

1. ACCEPTANCE SAMPLING

Professor G. E. P. Box (Chairman)
PANEL DISCUSSION ON COMMON FITFALLS IN THE DE.STIN OF
EXPERIMENTS. (OTHERS ON THE PANEL WERE MR. CUTHSERr DANIEL,
DR. I. S. HUMNTME, PR. IW. 3. YOUPEN AMP VR. MARVIN ZELEN).

P.(.,.. . . ....



Seventh Confernce: 18-20 October 1961, U. S. S!gnal Research
" n Cand Development Laboratory, Ft. Monmouth

Dr. G. A. Watterson

TWIE SERIES AND SPECTR.AL ANALYSIS

Dr. J. H. Harmmersley

MONTE CARL" AIET•iOPS

or, R. L. Anderson
DESIGNS FOR ESTIMATING VARIANCE COMPONENTS

Dr. Q. S, Watson

HAZARD ANALYSTS

Professor Robert H. Thrall (Chairman)
PANEL DISCUSSI ON OY SIMULATION. (OTHERS ON THE PANEL WERE
COL. A, W4. PEQUOV DR. JOHN HAMNERSLEV, MR. JOHN H. MOSS AND
DR, GUSTAVE ROBSOk).

Eighth Conference: 24-26 October 1962, Walter Reed Armry Instituteof Research

Professor Egon S. Pearson
4 A STArisriciAN's PLACE IN ASSESSING THE LIKELY OPERATIONJAL

PERFORMANCE OF ARMY WEAPONS AMP EQUIZPMENJT
Dr. Marvin A. Schneiderman

A GENERAL SURVEY OF SCREENING THEORY

Professor Herman Chernoff

OPT1A1AL VESION EXPERIMENTS

Dr. R. P. Abelson

AN EXPERIMENTAL DESIGN FOR DECISIONS UNDEIR UNCERTAINTY

Dr. H. C. Batson

Dr. Ht-old F. Dorn (Chairman)

PANEL DPSCUSSION ON DIET AND HEART DISEASE. (OTHERS ON
THE PANEL WERE 1. JEROWE CORNFIELD, ANP DR. GEORE V. MANN).
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Ninth Conference: 23-25 October 1963. U. S. Army Missile

Conmand

Professor Solomon Kullback
CO.r 4UNICATION THEORY

Professor Frank Proschan

THE CONCEPT OF MONOTONE HAZARV RATE IN SYSTEMS REALIABTLITY

Or. Churchill Eisenhart

REALISTIC EVALUATION OF THE PRECISION AND ACCURACY OF
. ZINSTRUMENT CALIBRATION SYSTEMS

Professor H. 0. Hartley

NONLINEAR ESTIMATION

Professor D. B. Duncan

ON THE SIMULTANEOUS ESTIMATION OF A MISSILE TRAJECTORY
AND THE ERROR VARIANCE COMPONENTS INCLUDING THE ERROR
"POWER SPECTRA OF SEVERAL TRACKING SYSTEMS

Professor Boyd Harshbarger (Chairman)

PANEl DISCUSSION ON WHAT TYPE OF STATISTICIANS ARE NEEDED
IN RESEARCH AMP DEVELOPMENT LABORATORIES. (OTHERS ON THE
PANEL WERE DR. E. L. COX, DR. CHURCHILL EiSENHARI MR. JOHN
L. MCDANIEL, DR. PAUL R. RIVER, DR. WILLIAM WOLMAII AND
DR. DONALD A GARDINER).

Ttnth Conference: 4-6 November 1964, The Army Research Office,

Washington, DC

MAJ GEN Leslie E. Simon (Ret'd)

THE STIMULUS OF S. S. /ILKS TO ARMY STATISTICS

Professor Oscar Kempthorne

VEVELOPMEWT OF THE DESIGN OF EXPERIMENTS OVER THE PAST TEN
YEARS

Professor H. 0. Hartley and Professor A. W. Worthebn

ASSESSMENT AND CORRECTION OF PEFICIENIES IN PERT ANALYSIS

KivLi . .... , .""---!
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Dr. Churchill Eisenhart
SAM WI LKS AS I REMEMBER HIM

Dr. W. 3. Youden
AN OPERATIONS RESEARCH YARN ANP OTHER COMMENTS

Professor John W. Tukey
THE FUTURE OF PROCESSES OF D)ATA ANALYSIS

Dr. M. G. Kendall
STATISTICS ANP MAJ!AGEMENTr"

Professor Gerald J. Lieberman (Chairman)
PANE!. DISCUSSION ON RECRESSION ANALYSIS. (OTHERS ON THE PANEL
WERE PROFESSORS ROBERT BECHHOFER, 0. E. P. BOX, JACK C. KIEFER
AND INGRAM OLKIN).

Eleventh Conference: 20-22 October 1965, U. S. Amy Munition Command,
Dover. Held on the campus of Stevens Institute
of Technology In Hoboken. New Jersey

Dr. Joan R. Rosenblatt

COONFZIENCE LIMITS FOR THE REALIA8ILITY OF COMPLEX SYSTEMS

Professor J. Stuart Hunter
NONLINEAR MODELS: ESTIMATION AND DESIGN

Professor William C. Guenther
TARGET COVERAGE PROBLEMS

Professor H. 0. Hartley
MAXIMUM LIKELIHOOD ESTIMATES FOR THE GENERAL MIXED ANALVSI OF
VARIANCE MODEL

Professor R. E. Bechhofer

PANEL VISCUISION O SELECTING THE BEST TREATMENT. (THE OTHER
PANEL MEMBER WAS PROFESSOR SH&'AqI S. GUMTAI.

xv
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Twelfth gorference: 19-21 CUtober 1966, Harry Diamond Labs,

and the National Bureau of Standards

Professor Brian W. Conolly

OPERATIONS RESEARCH

Dr. John Mandel
STATISTICS AS A DIAGNOSTIC TOOL IN DATA ANALYSIS

Professor W. G. Cochran
PLANNING AND ANALYSIS OF OBSERVAT7ONAL STUDIES

Professor Norman L. Johnson

SAMPLE CENSOR7NG

Thirteenth Conference: 1-3 November 1967, The U. S. Army Mobility
Equipment Development Center and the U. S.
Army Engineer Topographic Laboratories

Professor Frincis J, Anscombe

REGRESSION ANALYSIS

Professor K. A. Brownlee

SOME COX01ENTS ON MATCHZN0

Professor 1. 3. Good
SOME STATISTICAL METHODS PI AMACHINE INTELLiGENCE RESEARCH

Dr. Frank Proschan

MAXIMUM LIKELIHOOD ESTIMATION OF RELIABI LITY

Dr. M. B. Wilk

DATA ANALYSIS

Fourtelah Conference: 23-25 October 1968, U. S. ArrW Edgewood

Arsenal

LT GEN William S. Bunker
BROADENING THE HORIZOALS OF EXPERIMENTAL PESIGN

Professor Rolf E. Bargmann

ST•UCTURE AMP CLASSIFICATION OF PArTTERS

I,
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Professor Acheson J. Duncan
BULK SAMAPLING

Professor Emanuel Parzen
TIME SERIES

Dr. Walter D. Foster (Chairman)
PANEL DISCUSSION ON BULK SAMPLING. (OTHERS ON THE PA'4EL
WERE PROFESSOR.S ACHESON 3.* DUNCAN AND BOYD HARSHBARGER AND
MESSRS. HENRY ELLNER, GENE RAY LOWRIMORE, JOSEPH MANDELSON
AND VERNON H. RECHMEYER).

Fifteenth Conferencet. 22-24 October 1969, U. S. Army Missile
Coimmand

Or. John E. Condon
RELIABIL17TY AN QUJALITY ASSURANCE

Dr. Nancy R. Mann
SYSTEMS RELIAB1ITV

Dr. Clifford 3. Maloney
A PROBABILITY APPROACH TO CATASTROPHIC THREAT

Professor Richard G, Krutchkoff

THE EMPIRICAL SAVES APPROACH TO THE DESIGN AND ANALYSIS OF
EXPERIMENTS

Dr. S. C. Saunders
ON CONFIDENCE LIMITS FOR THE PERFORMANCE OF A SYSTM9 01EN
FEW FAILURES ARE ENCOUNTERE

Sixteenith Conference: 21-23 October 1970, U. S. Amoy Logistics
Management Center

Professor Solomon Kuilback
MINIMUM DISCRIMINATION INFORMATION ESTIA&ATION AND APPLICATIONI

Dr. Richard J3. Kaplan
FIELD TESTINQ

xvi
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Professor Gary G. Koch
THE ANALYSIS OF COMPLEX CONTINGENCY TABLE DATA FROM GENERAL
EXPERIMENTAL DE$GONS AND SAMPLE SURVEYS

Professor A. Clifford Cohen
ESTIMATION IN TRUNCATED POISSON DISTRISUTIONS " 11TH CONCO41TANrT
INTERVALS AND TRUNCATION POINTS
Professor Oana Qujade

NONPARAMETRTC ANALYSIS OF COVARIANCE

Seyveteenth Conferenct: 27-29 October 1971, Walter Reed Arimy

Institute of Research

Professor Mervin Zulen
THE ROLE OF MATHEMATICAL SCIENCES IN BIOMEDICAL RESEARCH

Professor Bernard G. Greenberg

RANDOMIZED RESPONSEs A NF.U SURVEY TOOL TO COLLECT DATA OF A
PERSONAL NATURE

Dr. Geoffrey H. BDll

CLASSZIFCATION AND CLUSTERING TECHNIQ(UES ZN DATA ANALYSIS

Professor K. S. Bonerjee

HOTELLING'S WEI•HOING DESIGNS

Dr. John J. Bart
THE COMPARISON OF PROPORTTONSe A REVIEW OF SIGNIF ICANCE TESTS,CON/FIDENCE INTETRVALS• AND ADJUSTMIENTS FOR STRATIFICATION

Eighteenth Conference: 25-27 October 1972. U. S. Army Test

and Evaluation Compend

Professor John Tukey

EXPLORATORY DATA ANALYSIS

Professor G. S. Watson

ORIENTATION ANALYSIS

Professor J. Stuart Hunter

SEQ•ENTIAL FACTORIAL LSTMATION

xv ii



Professor G. E. P. Box

FORECASTING AND CONTROL

Professor Raymond H. Myers

DUAL RESPONSE SURFACE ANALYSIS

Ninetenth C..fer.nc: 24-26 October 1973, Headquirters, U. S.
Armi_ y Armament Command & U. S. Ary Manage-

mint Engineering Training Agency

Professor Jerome Cornfield

SAYESIAN STATISTICS

Professor S. S. Gupta

RANKING AND SELECTION PROCEDURES FOR MULTIVARIATE NORMAL

POPULATIONS

Professor H. L. Gray

GENERALIZED JACKKI1FE TECHNINQUES

Professor Frank Proschan

RELIASBLITY GROWTH

Professor S. C. Saunders

ACCELERATED LIFE TESTTIO

Professor W. A. Thompson, Or.

RELIABILITY OF MULTIPLE COMPONENT SYSTEMS

Twentieth Cow•ertne.' 23-25 October 1974, U. S. Army Operational

STest & Evaluation A ency end U. S. Army

Engineer Center at it. belvoir

Or. Churchill Eisenhert

SAMUEL S. WILKS AND THE ARMY DESIGN CONFERENCES

Professor Solomon Kullback

MIUJLTIDIMENSIONAL CONTINOENCY TABLES

ii ............. .............................................................. .. ........
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Professor Herbert Solomon

MULTIVARIA4T VATA ANALYSIS

Professor H, A. David

ORPER STATISTICS

Professor Gerald Lieberman

RELIABILITV

'I Professor Robert Bechhofer

RANKika ANP SELECTION ROCEVURES

Ore, Marion R, Bryson and William Mlliol$

,MA• ZUM INFORMATION FROM EXPERIMENTS

Twenty-Vtrst Conference.: 22-24 October 1975p walter Reed Ary !
Twn s " " medical Center and the Armed Forces

Institute of Pathology

Professor Frederick Mosteller
SUCCESS IN SOCIAL ANV MEVICAL EXPERIMENTATION

Professor Edmund A. Gehan

MONRANVOMUZEV CLINICAL TRIALS

Professor Paul Meier
RANDOMIZEV CLINICAL TRIALS

Professor Seymour Geisser

PREDICTIVE SAMPLE REUSE

Professor Edmond Murphy

NOWMLITY AW DISUEAS

Twin t v-SeCond Conference: 20-22 October 1976, Harry Diamond Labs,
Adelphi• Maryland

Professor J. Stuart Hunter

THE ,EASUEME PROCES3

xx



Professor Benjamin S. Blanchard

MANAGEMENT OF RELIABILITV

Dr. Carl N. Morris

STEIN'S ESTIMATOR, ITS GENERALIZATIONS AND ITS APPLICATIONS

Professor Robert V. Hogg

ON ROBUST STATISTICAL PROCEES

Professor Nozer D. Singpurwall1
ACCELERATED LIFE TESTING

Twenty-Third Conference: 19-21 October 1977. U. S. Amy Combat
oevelop4mnts Experimentation Comand. Held
at the Naval Postgraduate School, Monterey,
"California

Professor 6. E. P. Box

TIME SERIES MODELING

Professor Norman Breslow

CENSORED DATA

Professor Donald P. Gaver
MODELING AND ESTIMATION OF COMPLEX SYSTEM AVAILABILITY

Professor H. 0. Hartley (Keynote)

ANALYSIS OF UNALANCEP EXPERIMENTS

Professor Rupert Miller

THE JACKKCNIFEe SURVEY AND APPLICATIONS

Twenty-Fourth Conference: 2-6 October 1978, Mathematics Research
Center, University of Wisconsin-Madison

Professor Ralph Bradley
SOME APPROACHES TO STATISTICAL ANALYSIS OF WEATHER MODIFICATION

I: !I
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Mr. Bernard Davis (for Professor Richard E. Barlow)
RECENT ADVANCES IN GRAPHZCAL TE'CHNTIUES FOR ANALYZING
FAILURE DATA

Professor Norman Draper (Keynote)
RIDGE REGRESSION

Professor Brien Joiner

STATISTICAL CONSULTING

Professor Grace Wahba

DES1GN PRO0LEMS IN RECOVERING YFUNCTIONS OF TWO OR SEVERAL
VARIABLES

Twenty-Fifth Conference: 17-19 October 1979, U. S. Army Natick
Research and Development Command

Professor William G. Cochran (Keynote)

SUMMARIZING THE RESULTS OF A SERIES OF EXPERIMENTS

Dr. Frank E. Grubbs

AO.UARTER CENTURY OF ARMY DESIGN OF EXPERIMENTS CONFERENCES

Mr. Al L. May
DESIGNED EXPERIMENTS IN SENSORY TESTING

Dr. Ray E. SchafeEE
COMPUTER AIDEDP HYIPOTHESIS TESTS - THE BIRNBHAUM• TEST

Professor Warren Stewart

NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES AND •A•ESIAN
,PARAMETER ESUIMTArIN

Professor Marvit Zelen
ETHICS AND STRATEGY IN THEAPEUI"C INVESTIGATION

.xx
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SAMUEL S. WILK$ ME14ORIAL MEDAL

The Samuel S. Wilk% Memorial Medal Award, initiated tin 1964 by
the U. S. Army and American Statistical Association Jointly, Is
administered by the American Statistical Association, a non- rofit
educational and scientific society founded in 1839. The Wil s Award
is given each year to a Itatistician and Is based primaril on his
contributions to the advancement of scientific or technical knowledge
in Army statistics, ingenious application of such knowledge, or
successful activity in the foatering of cooperative scientific
matters which coincidentally benefit the Army, the Department of
Defense, the U. S. Government, and our country generally.

The Award consists of a medal, with a profile of Professor Wilks
and the name of the Award on one side, the seal of the American
Statistical Association and name of the recipient on the reverse,
and a citation and honorarium related to the magnitude of the Award
funds. The annual Ary Design of Experiments Conferences, at which
the Award is given each year, are sponsored by the Amy Mathematics
Steering Conmittee on behalf of the Office of the Chief of Research
and Development. Department of the Amy.

The funds for the S. S. Wilks Memorial Award were donated by
Philip G. Rust, retired Industrialist, Thomasville, Georgia.

RECIPIENTS OF THIS AWARD

AM DESIGN CONFERENCE (and Year) PRESENTED
Ni. F~A., E. GA~ibbt Tt*th 11964)

8a.ýUt&o RUeAe-hd Labouto/Ig

P/tojeo% John Tukey, Eoute.veh (1965)
P&I~ncWtn UniveA~AiLt

M41o-t GeKPuAa LeuLis E. S4moit Twet1th (1966)
UovL.Ccd S~tAtu AJWry (Re.Vd)

P'w0u"out W. G. Coclmau T`WteAth~ (1961)
L ~Ho~uaAd UnLvIMUt4

P'oUJUoA J#AZV Nt~m Fou)Ltte~1th (19681

V4i. W. .1. youdeAn Fi.pete.* (1969)
NdtiOl-L Bu~aail ej S•twwa (Ret'd)
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A G E N D A

THE TWENTY-FIFTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN

ARMY RESEARCH, DEVELOPMENT AND TESTING

17-19 October 1979

Host: The Natick Research and Dcvelopment Command

'Held: Auditoritm, Administration Building, Natick
Research Laboratories, Natick, Massachusetts

***** Wednesday, 17 October ***

0815-0915 REGISTRATION -- Lobby, Administrktion Building

0915-0930 CALLING OF THE CONFERENCE TO ORDER -- Lobby

Donald Kass, Chairman of Local Arrangements, Natic.k
Research and Development Command

WELCOMING REMARKS

COL Robert J. Cuthbertson, Natick Research and
"Development Command

0930-1200 GENERAL SESSION I

CHAIRMAN - Douglas B. Tang, Chief, Department of Biostatistics/
Applied Mathematics, Walter Reed Army Institute of
"Research, Washington, DC

0930-1030 Special Silver Anniversary Address

A QUARTER CENTURY OF ARMY DESIGN OF EXPERIMENTS
CONFERENCES

Frank E. Grubbs, Program Committee Chairman, Ballistic
Research Laboratory, Aberdeen Proving Ground, Maryland

1030-1100 BREAK
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1100-1200 GENERAL SESSION ,I (Continued)

KEYNOTE ADDRESS

SUMMARIZING THE RESULTS OF A SERIES OF EXPERIMENTS

William G. Cochran, Department of Statistics, Harvard
University, Cambridge, Massachusetts

1200-1330 LUNCH

1330-1500 TECHNICAL SESSION I -- ROBUSTNESS AND OUTLIERS

CHAIRMAN - Francis E. Dressel, Army Research Office,
Research Triangle Park, North Carolina

APPLICATION OF ROBUST FILTERING AND SMOOTHING TO
TRACKING DATA

William S. Agee and Robert H. Turner, Analysis and
Computation Division, White Sands Missile Range,
New Mexico

ROBUST REGRESSION ANALYSIS IN PREDICTING CERAMIC
STRUCTURAL FAILURE

Donald M. Neal, US Army Materials & Mechanics Research
Center, Watertown, Massachusetts

COMPOUND FREQUENCY DISTRIBUTIONS

Donald W. Rankin, US Army Materiel Test & Evaluation
Directorate, White Sands Missile Range, New Mexico

1500-1530 BREAK

1530-1630 GENERAL SESSION I1

CHAIRMAN - Donald Kass, Natick Research and Development
Command, Natick, Massachusetts

ETHICS AND STRATEGY IN THERAPEUTIC INVESTIGATIONS

Marvin Zelen, Department of Statistical Sciences,
Harvard School of Public Sciences, Boston, Massachusetts

1830-1930 SOCIAL HOUR -- Maridon Restaurant

1930 BANQUET -- Maridon Restaurant
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***** Thursday, 18 October ****

0900-1030 TECHNTCAL SESSION II -- STATISTICAL THEORY

CHAIRMAN - Grady Miller, US Army Materiel Systems
Analysis Activity, Aberdeen Proving Ground,
Maryland

ON SIMULTANEOUS INFERENCE FOLLOWING A SIGNIFICANT

*KRUSKAL-WALLIS TEST

Andrew P. Soms, Mathematics Research Center, University
of Wisconsin-Madison

SOME BAYESIAN ALTERNATIVES TO SIGNIFICANCE TESTING

Thomas Leonard, Mathematics Research Center, University
of Wisconsin-Madison

VARIANCE REDUCTION IN MONTE CARLO SIMULATION

Mark Brown, Florida State University; Herbert Solomon,
Stanford University; and Michael A. Stephens, Simon
Fraser University, Burnaby, B.C.

1030-1100 BREAK

1100-1200 TECHNICAL SESSION III -- DATA ANALYSIS

CHAIRMAN - Carl Aates, US Army Concepts Analysis Agency,
Bethesda, Maryland

SENSITIVITY OF TOLERANCE LIMITS TO SMALL SAMPLE SIZES
James R. Knaub, Jr., US Army Materiel Test and Evaluation
Directorate, White Sands Missile Range, New Mexico

THE PERIODIC NATURE OF EXPERIMENTALLY MEASURED DATA

Michael Hacskaylo, Night Vision and Electro-Optics
Laboratory, Ft. Belvoir, Virginia

1200-1330 LUNCH

1330-1530 GENERAL SESSION III

CHAIRMAN - Edward Rose, Natick Research and Development
Command, Natick, Massachusetts

DESIGNED EXPERIMENTS IN SENSORY TESTING

Alfred T. May, Pillsbury Research Labs, Minneapolis,
Minnesota
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COMPUTER AIDED HYPOTHESIS TESTS - THE BIRBAUM TEST

Ray E. Schafer, Hughes Aircraft Company, Fullerton,
California

1530-1600 BREAK

1600-1700 TECHNICAL SESSION IV -- LEAST SQUARES

CHAIRMAN - Maxson Greenland, Chemical Systems Laboratory,
Aberdeen Proving Ground, Maryland

VARIABLE TRANSFORMATIONS IN NONLINEAR LEAST SQUARES
PROBLEMS

Aivars Celmins, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland

ANALYSIS OF DATA WITH THE NONLINEAR LEAST CHI SQUARE
ALGORITHM

Richard L. Moore, US Army Armament Research and Development
Command, Dover, New Jersey

~**** Friday, 19 October *****

0000-0900 TECHNICAL SESSION V -- BIOMEDICAL APPLICATIONS

CHAIRMAN - William E. Baker, Probability and Statistics
Branch, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland

ERROR-TIME RESPONSE PERFORMANCE OF NAIVE SUBJECTS

Michael Hacakaylo and Joseph E. Swistak, Night Vision
and Electro-Optics Laboratory, Ft. Belvoir, Virginia

IMAGE INTERPRETATION PERFORMANCE IN FOUR STANDARD TYPES
OF AEROGRAPHiC FILM

Ronald L. Johnson, US Army Mobility Equipment Research
and Development Command, Ft. Belvoir, Virginia

0900-0930 GENERAL SESSION IV

CHAIRMAN - Frank E. Grubbs, Ballistic Research Laboratory,
Aberdeen Prowing Ground, Maryland

OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY
AND STATISTICS

Douglas B. Tang, Chief, Department of Biostatistics/Applied
Math, Walter Reed Army Institute of Research, Washington, DC
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0930-1000 BREAK

1000-1100 GENERAL SESSION IV (Continued)

NEW ALGORITHMS FOR NON-LINEAR LEAST SQUARES AND BAYESIAN
PARAMETER ESTIMATION

Warren Stewart, Mathematics Research Center, University
of Wisconsin-Madison

1100 ADJOURN

PROGRAM COMMITTEE

Carl Bates Walter Foster J. Richard Moore

George E. P. Box Frank E. Grubbs Douglas Tang

Larry Crow Donald Kaes Malcolm Taylor

Francis Dressel Robert Launer Michael White
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SPECIAL SILVER ANNIVERSARY ADDRESS: A QUARTER

CENTURY OF ARMY DESIGN OF EXPERIMENTS CONFERENCES

Frank 1. GrubbP
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland

Welcome to the 25th Conference on the Design of Experiments

in Army Research, Development and Testing. A whole quarter of

a century has passed since Sam Wilks recommended that the Army

start this series of conferences, and what an excellent idea he

had, with all the vision for the future of Army statistics. As

we all know, Wilks was a very remarkable man: a gentleman, a good

leader, an outstanding scholar and research statistician, a man

who also had very vital interests in applications, and he liked to

gsee people work together. Sam traVelled much for the Department

of Defense and he consulted widely on all probable areas of sta-

tistical application for the Government. He missed none of these

conferences, and we remember him so well in his role of selecting

many of the key statisticians in the universities to participate

in these conference%, as we •et at the Cosmos Club-in Washington,

and drank and dined with Sam. I think we have a better pay-off

from these statistical conferences than the other DOD conferences,

because of the close interface with university statisticians, in-

cluding, of course, the eminent statistician who gives the keynote

address next. To the memory of Sam Wilks we owe so much, and

therefore in 1964 we devoted the Army Design of Experiments Con-

ferences to Sam's memory.

This particular conference, the landmark 25th, is. also dedica-

ted to our good friend, fellow mathematician and statistician,

teacher, and excellent administrator, Dr. Francis G. Dressel. How

would the design of experiments conferences ever have survived if



it had not been for Francis ?, who carried always the big part of

the load. I am asking him to make a few remarks next. I am glad

4Francis has trained Bob Launer so well tool

Now how in the world did I ever get saddled with a "Special

Silver Anniversary Address", including the fancy title that came

from, I might say, a former friend? It is probably because some

of my colleagues saw me enjoying beizg too much a "free lancer"
at these conferences, so they thoughtl I must stretch the exact

title of my talk a bit to cover more statistics. Back in the mid-

Thirties, I was a timid, very illiterate Southerner, trying to eke

out a living by teaching engineering math at (now) Auburn University,

and it became starkly clear that we lowly instructors would hardly

ever be promoted unless we got a Ph D! But it was also made quite

clear to us that getting a Ph D would not make us a better teaoher!

A quick OR study (not so-called then) convinced us that we should
as an outlet,

seek something in applied matk, A and statistics was the subject to

study, for it w&s needed and spreading fast too, for example to our

agricultural experiment station problems. I had a friend, who got

a Ph D at Cornell University, and had & good job at our experiment

station, so that he introduced me to the analysis of variance,

which seemed to be a misnomer, and he even alarmed me with the

idea of the analysis of covariancel I later heard that Karl Pearson

was the greates•t statistician of all, but that one R. A. Fisher was

not sprinkling holy water on all the things Karl Pearson had done.

My friend wanted to know if I had read any of the reputable jour-

nals on the subject of statistics, and I hadn't, of course. In

fact, in about 1934 a paper by a young genius on the distribution

of quadratic forms in a normal system, with applications to the

analysis of covarianca had appeared in a (strange) journal called

2
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the Proceedings of the Cambridge Philosophoical Society, written

by our keynote speaker of today. Later, in the early 1940's when

I had been in uniform at the BRL during World War I1, we had trouble
justifying a journal called "Biometrika' at first, and there was no

way the Army would ever approve the Annals of Eugenics in our Li-

brary even if it contained statistical papersl

In any event, back in the mid- to late 30's it did seem that

statistics would-be a good choice of graduate study with an out-

let. But where in the United States could one study statistics?
He certainly could not do so down South, and in fact there were

only two, or maybe three, places to go for statistics courses - Iowa

State University, the University of Iowa, and perhaps the University

of Michigan. The latter was mostly an acturial school with well-

known voices such as Menge and Glover, with Cecil C. Craig and J

Paul Dwyer coming along, and perhaps most interesting of all an.

athletic statistician and actuary, Harry Clyde Carver, who would

challenge his graduate students to beat him at any sport of their

own choice. If Carver won, there would be a stiff final exam and

no A's! One had to beat Carver at his own game!

We selected Michigan, for Iowa State University seemed too

far away, and Alan T. Craig of Iowa was scheduled to give the

basic graduate statistics course at Michigan in the summer of 1937,

and what a good start to learn to throw dice, et al! That summer,

I tried to learn what a random variable was. I had known Clifford

Cohen for years back at Auburn, and at Michigan, Clifford of all

things, had elected to write his dissertation on the very obscure

subtere of truncated sample thtoryn But how in the world oould

there ever be much interest, let alone wide applications, of such

an odd topic? A colleague, who had treaded this mill before,

assured me that "Clifford Cohen was a very

...........



smart man - he chose a topic no one else would ever work onl"

The advice continued, "Don't ever pick a 'hot' topic, for

a genius will beat you to it, and you'll/n never get your degree"I
in mathematics I

The non-statistical graduate students / frowned at anyone studying

statistics, as it was not as important as topology or even dif-

ferential geometry either. one of them was somewhat friendly

though, and on occasion would drop by our "flat" with his wife. '1
He would pick up and continue my wife's needlepoint with much en-

thusiasm, but didn't care for statistics then, or any part of it!

His name - Jimmy Savage (1). And it goes to show you what can hap-

pan toot pure, rigorous mathematician, once he is "bitten by the

bug" or otherwise the clever ideas of the Reverend Thomas Bayes!

It was not easy to to find and settle upon a dissertation topic

without some guidance, but all the professors already had too

many graduate students, and i.y had passed along topics to some
they never heard from# so that I had "better look around in the

library". No one then told me, for example, that concerning trun-

catoed sample theory this would develop into the field of order

statistics, and moreover blossom into reliability , life-testing,

et al, and it was in fact many, many years before that did

occur. You see, no advice I had been given really sunk in, for

I decided to work on outliers, and the international situation

had gotten so gloomy that writing a dissertation would not be

done very quickly anyway, So, being a reserve officer, I was intro-

to the Army.

The physical and engineering sciences were just beginning to

make some uses of statistics, although Walter Shewhart had made
/ at Michigan

applications of statistical quality control. In 1941 I got ahold

of a new book, "An Engineers's Manual of Statistical Methods" by

one Major Leslie E. Simon, and as I read it and was enlightened

...... .-.............. ,, -
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I
by the book, some correspondence developod, for here was an

Authority who had the vision, the wisdom and the courage, of

all things, at the time of a very low cycle on the Bayesian revo-

lution (so that we later kidded Les Simon that he had the unmiti-

gated gall) to publish in the back of his book some Z Charts to

estimate the fraction of defectives in a lot by using Bayes'

equally likely hypothesist Today, there seem to be no 100l j
classical statisticians, so that we can chalk up another win for

Los. And this introduced me to the Army's Ballistic Research

Laboratories, on active duty in uniform as a Lieutenant, where

i there was never to be an end to all kinds of knotty statistical
problems.

As pointed out in Los Simon's book, An Engineers Manual of

Statistical Methods, Dr. L. S. Dederick had worked out the proba-

bility distribution of the sample range (largest minus smallest

observation) back in 1926, and had partially tabulated its dis-

tribution, but wouldn't submii it for publication! Sam Wilks had

4,, occasion consulted with the person-
nel of the Ballistic Section of BRL at Aberdeen Proving Ground

on various statistical problems. Also, since the dispersion of

shots on a target, as from rifle firings, was often measured by

Y the "extreme spread", or bivariate range, this little nasty sta-

tistical distribution had eluded statisticians, and Mr. Philip

IG. Rust, an industrialist and "rifle accuracy bug", established

by sampling shot patterns the distribution of the extreme spread

1'• for small sample sizes. Also, on the train from Washington to

Wilmington, Phil Rust had told Sam Wilks about it and had suggested

that he look into the

4 In a panel discussion on Bayesian methods on reliability one time, I stated that
statistically I was 50% classical. 25% fiducial and 25% Bayesian, but Frank Proechan
promptly branded me an a hermaphrodite.

5
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theory of the probability distribution of the extreme spread in

order to study its properties, as it was widely used in ballis-

tics and rifle accuracy competititons also.

When I arrived at the BRL at Aberdeen Proving Ground in 1941,

John von Neumann, Robert H. Kent, H. R. Bellinson, and B. I. Hart

had just worked out and published In the Annals of Mathematical

statistics the distribution of the mean square successive differ-

once, and the mean square successive difference to the variance,

and B. I. Hart had calculated percentage points of both.

The "real world data", coming out of ballistic testing of all

kinds, often defied any good or "normal" analysis, and were loaded

with outliers! There was thus an applicable dissertation topicl

in the mid Forties, there existed a critical need to do something

about speeding up the production of firing tables, as about 100

female "computers" were always busy running computations on those

big, heavy desk electric Priden or Monroe calculators.

Leslie E. Simon valued brains to solve the Army's problems in

ballistics, and he had established a scientific advisory committee

with some of the best brains In the physical sciences in the

country. What a wonderful and stimulating place to work, less much

time to be in uniform and fight the "battle of Aberdeen"!

Back in the early Thirties, Simon was Chief of Manufacture

at Picatinny Arsenal, and had cultivated the interest and exper-
tise of Walter Shewhart to apply the principles of siatistical

6
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at Pica~inny Arsenal.

quality control to the manufacture of ammunition At the BRL

in World War I1, Simon saw the pressing need to pass on the

principles of statistical quality control to industry in the

production of ammunition and weapons for the US Army, and he

1'• also worked with Harold Dodge of the Bell Telephone Laboratories

to start computations of the standard sampling inspection tables

for the Army Ordnance Corps, later put into Military Standard 105A.

Sam Wilks had long been aware of the need for well-designed

experiments and hence suggested that the Army start a series of

annual conferences to promote statistical methods. Sam suggested

that the Design of Experiments Conferences should have three types

of sessions: First, there would be some special invited papers

by well-known authorities on the philosophy and general principles

of statistical design of experiments, then there would be some

technical papers presented by Army statisticians,-and finally

there would be clinical sessions with suggestions from the experts -

and we still stick to this format today. These conferences had

their beginning 19-21 October 1955 at the Diamond Ordnance Fuze

Laboratory and National Bureau of Standards in Washington, D. C.

We note that Sam's conferences were Army Wide, and attracted DOD

interest, while a conference the Ballistic Research Laboratories

put on a year earlier (1954) on the use of statistical methods

was primarily for Army Ordnance personnel.,

"Within Ordnance and the Army, Leslie Z. Simon certainly was

the great stimulus to the advancement of statistical methods, for

7
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at the BRL Los was not only its Director, but he also prepared

a large number of papers on engineering statistics or statistical

ongineering - what ever you want to call it. Moreover, there was

a pressing need for these very papers to acquaint industry to

the methods of quality control and statistics in connection with

the World War II effort. And Les helped promote the short courses

on statistical methods in industry. There was a great deal of

interest during this period concerning the concept of "economical

lot sizes", and also the concept of producing very large "homo-

geneous lots" so that for ammunition at least we could get rid of

the situation where at a field artillery battery site there existed

a mixture of rounds from several or many lots with different levels

of muzzle velocity and degrees of surface-finish roughness,

In the mid-nineteen Forties, a very significant and World-

Wide development occurred due to an idea of our imminent and es-

teemed Scientific Advisory Committee member, John von Neumann. He

had suggested the constructidn of the ENIAC or Electronic Numerical
a digital computer

Integrator and Calculator / at the BRL. We saw the handwriting

on the wallE The ENIAC could be used to Monte Carlo anything to

death, in addition to the more straight-forward computations of

mathematical and statistically tractable functions. And so many

statistical problems were plannedl First, however, there had to

be some calculations on the distributions of.'outliers, and the

ENIAC staff was looking for worki It was then that I learned

about priorities and the real importance of any statistical problem
to the country!

8



Once they got the ENIAC wired for my outlier problem, the Atomic

Energy Commission called on Geri Simon and Johnny von Neumann to

use the ENIAC to obtain an optimum solution to the problem of

imploding the core of a nuclear warhead, with the result, of

course, that even though our Computing Laboratory had begged for

work, my suggestion and the start of some extensive calculations

to keep them busy immediately got a vanishing priorityl

In those days of a great scientific effort at the BRL and

many of the Country's great physicists, chemical physicists, mathe-

maticians, engineers, at al, I felt just like Lee Simon had always

said, "The engineers would call him a statistician, and the statis-.

ticians would call him an enginser"1 Indeed, we were trying to

apply statistical techniques to many knotty physical problems for

which there was a phisical model that applied well. Perhapw

I would have been much better off in agriculturel We survived

some way or the other and hence got away from the use of primarily

the probable error which was never to be deleted from firing tables

thoughl

Now, getting back to the uses of Army Statistics, which led

up to the Design of Experiments Conferences, we record that a

very good account of the statistics in'the Army from the very be-

ginning has been prepared by our good friend Clifford Maloney (The

American Statistician, June 1962), who traces various statistical

interests in one way or the other from very early times - he

started out with Daniel Bernoulli in 1777. As pointed out by

Maloney, there certainly was much vital interest in medical

9
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statistics of the Army from the beginning, and at West Point the

graduates needed to know something about the dispersion of 4hots

on a target, and least squares and the adjustment of data. In

fact, in early times, the best engineers in the USA were really

coming from West Point. Then again, there was always considerable

interest in the sensitivity of explosives to impact or shock, the

sensitivity of primers and other items of Ammunition, which no

doubt brought about the so-called "Bruceton Method" of sensitivity

analysis, and later developed into the Dixon-Mood "Up and Down"

technique at Princeton, and since has been widely used. Naturally,

Dixon and Mood were atudents of Sam Wilke, who again enters the

general picturel So you see, the Army did indeed have the most

nat~iral needs and demands for the application of statistical

methods, and Sam Wilke was the first university professor to recog-

nize this vital development for the good of all concerned, as he

was always in touch with so many important applications.

I think that the Army Design of Experiments (DOE) Conferences

Sam Wilke started have performed the the vital task of fulfilling

the need for cross-fertilization of statistical theory and prac-

tics, even though these conference. occurred only eone a year.

It is through the Army DOE conferences that we have become ac-

quaintad with each other, discussed common statistical problems,

presented solutions to others, learned a lot from the eminent

university statisticians and gotten their best suggestions during

the clinical sessions. Moreover, this has all stimulated Army

10
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satisticians to perform very good work and publish a number

of useful results for others to apply. If it had not been for

Wilks' vision and the DOE conferences, we would have been off

to ourselves, no doubt,working very much more inefficiently.

Now all of you have the nice little pamphlet prepared by Bob

Launer for this, the Twenty-fifth anniversary of the Army DOE

conferences, and we note that the series got off with a bang in 1954

as Bill Cochran led with the philosophy underlying the the design of

experiments. Churchhill Eisenhart spoke on principles of ran-

domization (Isn't that still an unsettled topic 7) and John Tukey

headed a panel on "Where do statisticians fit in?"). Jack Youden

aided in his most interesting way of talking about the design of

experiments in industrial research and develpoment. The applica-

tion of order statistics and problems in subjective testing came

into the Second DOE conference, and we were fortunate to have

R. A. Fisher at the Third conference! Also at the Third confer-Ience Ho Hartley spoke on changes in the outlook of statistics

brought about by modern computers, and Ben Epstein, who at one

time even worked at Frankford Arsenal, covered what was to become

a very important Army field "life-testing" - and later reliability

and reliability growth. Here at Natick for the Fourth conference,

it was appropriate to have L. H. C. Tippett discuss statistical

methods in the textile industry, and the Fifth conference taught

me a lot about smoking and lung cancer (now forgottenL) because

of the lively debates between Joe Berkson of the Mayo Clinic and
Jerzy Neyman (both smoking, I believel)

.. .
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The theme or title of these conferences was stretched many

times, I am reminded, to include many important topics of the

day or time, and this was necessary and good tool In fact, I

note that Egon Pearson gave the keynote address of the Eighth

conference on a statistician's place in assessing the likely'

operational performance of Army weapons and equipment, or the

need for statistics in military operations research and weapon

systems analysis. In fact, the Army has a parallel series of

conferences, started in 1961, known as the Army Operations Re-

search Symposia. I found that the field of operations research

was being staffed primarily by mathematicians, physicists, en-

gineers and others, but not enough statisticians, who could aid

in their modelling problems of stochastic processes. For example,

for probability of hitting problems there was often the need to
have simple approximations to the distribution of quadratic forms

in normal variables, and techniques like the Wilson-Hilforty

transformation of Chi-square to approximate normality and the
othose darn that

Polya-Wilson approximation to'cut-off normal integrals/were found

to be very useful. Moreover, we also saw that the theories of

life-testing would apply to Lanchester type combat theory.

Becaiss.e of the critical need for the evaluation of weapon systems,

and later many other military operations research topics, the

Army OR symposia have attracted a large number of "high brass"

type visitors. Statistical topics have been often discussed at

the Army OR conferences and OR topics at the Army DOE conferences.

Forget titlesa

12
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In the Spring of 1964, some six months before the Tenth con-

ference, we'got the shock of our lives with the untimely passing

of Sam Wilks. For the Tenth conference, Les Simon came forth with

an excellent and informative paper on the stimulus of S. S. Wilks

to Army Statistica, and the high importance of the DOE conferences

to Army statistical endeavors.

Fortunately, the DOE conferences have proceeded to cover the watez

front, and stimulate and train more statisticians.

Now although I have mentioned many of the key benefits and

much in the way of significant progress that has resulted from

the DOE conferences, let me now jump to a look at the whole series,

or the view from an operations research eye. To begin with,

it becomes quite clear that we have learned a lot about modelling

processes (stochastic) or fitting models to data in order to

make more general predictions, or to summarize. "Models" ?

Yes! And this reminds me of what George Box is quoted as sayiztg,

"All models are wrong, (but) some (even) work"! How true this

is! Aren't models competitive, and haven't we found that the

situation doesn't exist for which only one model is right and

all the others wrong? In fact, we are often lucky that a-ny of

several competitive models may serve the purpose at hand very

well. Yes, I think we have learned how to model many important

Army areas of application, and this has also brought about model

development or better theories.

Obviously, the great benefit to the Army from the DOE

13
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conferences has been the expert counseling of in-house statis-

ticians by the eminent university statisticians who have so kind-

ly given of their time and experience. One has only to look at the

little booklet of featured speakers to be very highly impressed

with the caliber of the talent. We greatly appreciate this, as

their help, including the clinical session suggestions, has been

outstanding, and for very difficult areas of application.

This brings to mind another point. The US Army is a very

large and diversified organization. In case you need some con-

verting on this point, just attend one of the Army Science Con-

ferences held biennally at West Point. In addition to our little

corners of application we have discussed over the years, at the

Army Science conferences, they have presented papers on, for ex-

ample, sampling the polar ice caps - which brought up many sta-

tistical problems of note - or even the extraction and analysis

of snake venom! What are the main controversies about? You

guessed it: the instrumentation, the measurements and their in-

terpretation. Army investigators has grown increasingly aware

of errors of measurement, precision and accuracy, and even jusL

how to define these illusive concepts. And so have others. For

example, Committee E-11 of the American Society for Testing and

Materials has for some 20-25 years been working on the problem

of standardizing the views of engineers, chemists, etc., on the

st.bjecte of precision and accuracy, and come forth with a recom-

mended practice. 1 still don't see an end to this effort, for

14
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there are enough "divinely endowed", stubbornly statistical minds

to bring about nothing but impasse's. (Incidentally, I know that I
alone am

right though, and they needn't think they can sway me to a com-

promisel). As a passing remark, there's a full time job for a

young, competent statistician for NASA, the FAA, and such agencies,

in connection with sampling the atmosphere in order to establish

temperature profiles, ozone content profiles, etc., by.knowing the

capability of their instrumentation for the first time.

We have learned much about the statistical design and analysis

of scientific type experiments, and the construction of designs -

the latter, I think! Furthermore, I see evidence very frequently

of some "fancy" experimental designs that Army investigators are

using, with very sophisticated analyses, too. On the front cover

of the program of the Tenth Conference, there is a 10 x 10 Graeco-

Latin Square, and no one yet has pointed out an error in itt

When the nice, balanced experiments have been violated in one

way or the other, speakers like Hoh Hartley (who regrets that

his dutias as President of ASA keeps him away today) have come

along to help or straighten us out. We have used linear models

mostly, but have been hit by nonlinear models at times, and

George Box has on several occasions given us his unique approach

to time series analysis.

There have been many advances over the years in the analysis

of contingency tables, and count data generally. We have had

many contributors on this subject speak to us, and the several

? 15
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approaches presented to us, including Kullback's information

theory approach, and some of the recent work of Feinberg in

our preceding two-day tutorial course. Perhaps the US Army

Operational Test and Evaluation Agency has made much use of

contingency table analyses, and have benefitted from them.

I will continue to try and sort out that problem, and I note

that my experience has been primarily in connection with the

comparison of two or more binomial type proportions, and irre-

spective of Fisher's fixed marginals, and stuff like that, I

still don't want to confuse the issue by imbedding the compari-

"son of binomial p's in a contingency table analysis. Maybe the

real experts have other views.

Hasn't the field of reliability and related applications

hit us with a big bang, to say the least ? And the high-level

"brass" or managers have shown the greatest of interest in it

too. Remember, I remarked that'Clifford Cohen in the late 1930's
w2rote his dissertation on the obscure subject of truncated sample

theory? Well, finally the area came to life and howl Although
the normal distribution was the "universal" one in the past, it

didn't "take" with the reliability analysts at all, and they

aimed for the exponential distribution. At tha 1977 Monterey

Conference (23rd), a paper was givan by Herback, Green and Blumen-

thal on the "curse" of the exponential model, and they quote:

"The exponential is wrong,
•,33 But works like a song.

Beware the Weibull:
It's incorrigible" - Anon

Remember George Box - All models are wrong!
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There is some heavy interest in reliability growth, and the
and

whole field of reliability will continue/will continue to expand.

There are now so many methods or recommendations for obtaining

confidence bounds on system reliability that an appointed coimmittee

has not been able to standardize on a technique for DOD. It

might be said that sample order statistics are of much importance

to the Army nowadays, and often even help to take care of the

outlier problem. Finally, reliability analysts have worked on

estimation and other properties of the two- and three- parameter

Weibull models so much that this has actually aided in the spread

of the Weibull distribution to many other areas of application

"than reliability. Perhaps this is bncause of the robustness of

the Weibull model in representing a variety of shapes.

A very old statistical problem is that of bio-assay types of

"analysis, and it borders on the estimation of risks and safety

levels in any number of other fields. There are many papers on

the subject of quantal response, "sensitivity analyses", explo-

sive sensitivity (Bruceton), ballistic limit, Up and Down method, etc.

which have been aired in these conferences. Quantal response

investiqations, and especially the estimation of both high and

low percentage points (of unknown distributions), does indeed

cover a very important statistical effort for.the Army, and it

will continue to expand also. Maybe this is an area for which

the use of physical models is needed in addition to statistical

analyses, or at least a combination of both. We will face more
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and more safety type problems, for which there will be heavy de-
mands for statistical treatment, while we used to avoid them al-

together. Let me mention one nasty little problem having to do

with armor protection in tanks, or penetration mechanics, and

hence for safety of tank crews as a result of armor thickness

determination and design. It is also a statistical problem the

Army continues to need help on to estimate the parameters for

zero chance of penetration. Do you like continuous distributions

that slowly change to a series of binomial and continuous models

of some kind? And even approach a binomial distribution with

parameter zero? In this case, we start firing at a piece of armor

plate of a certain thickness, and for the high-striking velocities

we will (usually) get 100% penetrations of the projectiles through

the plate, and there will be a "residual" velocity distribution

for the projectiles or pieces of projectiles which have penetrated
and come off the back.

the plate But as the striking velocity is decreased, then the

proportion of projectiles penetrating the plate will decrease,

ultimately to zero for low-striking velocities, and thus we say

that a safety level exist somewhere, or at least we would like to

know just where, for example, only 1 in a 1000 of the projectiles

would penetrate. The curve or residual velocity versus striking

velocity gets very steep near the bottom, obviously, and its a
challenge to ballisticians and statisticians to deal with the

precise and highest striking velocity for which zero penetrations

occur. What I am also indicating is that there are many problems

of interest for which statisticians and physical scientists must

work as team members, and the DOE conferences guarantee just that.

18L .. ..



Let us not forget the field of sampling inspection or acceptance

sampling inspection, and the DOD's use of standard sampling in-

spection tables and practices. These are important activities

that the Army initiatpd with the original help of Harold Dodge$

and our DOE Proceedings include a number of papers on the subject.

This is really the area of statistics that taught us much about

operating characteristic curves, or power curves, and the deter-

mination of sample sizes, and the like. Thus, many statistical

areas of interest spill over into other topics, and so the process

continues.

Now I have made my little choices of some of the benefits

and topics of value that we have been priveleged to be part of

in our twenty-five years of Army Design of Experiments Conferences.

Perhaps you can expand or improve on what I have covered and hence

make more sense out of things. I invite you to do so. In any

event, it certainly seems quite clear that these conferences

have been very "cost-effective" to the Army.

I think it was Cliff Maloney who once suggested that there

should be published a volume of the best papers of the proceedings

of these conferences. This assignment I was given made me look

through the whole shelf-wide proceedings, and I agree that there

are certain of the papers which indeed should.,be brought together

in some kind of memoirs.

Maybe we' can now get Francis Dressell to make a remark or

two, as we have dedicated this the landmark 25th Conference to

him. Francisa
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SUMMERIZING THE RESULTS OF A SERIES OF EXPERIMENTS

William G. Cochran

Professor of Statistics Emeritus, Harvard University

I first met this problem in the thirties in agriculture. I wrote a

paper on it (1), and later a more ambitious paper with Yates (2), in which

a number of examples were worked. 4, trio( to see in what respects the

analysis of a group of experiments resembled and in what respects It differed

from the analysis of a single evp•:riment.

The need to summarize results of a series of experiments on the same

treatments arises in two types of application. The first type may be des-

cribed as exploratory; a number of experiments on the relative performance

of something or of two treatments have been carried out, and we are trying

to answer the question; what is the present state of knowledge about the

relative merits of the two treatments? For instance, the recent academy

study of saccharin started with the experiments in which large doses were

given to rats; these were the prime experiments. To cite a second example,

Yates and Crowther realized at the beginning of World War II that Britain

would have to import most of her fertilizers during the war and would be

short of fertilizers. Accordingly, they summarized the experiments (4)

about the responses of the common farm crops to fertilizers in order to

answer the question: What is the present state of knowledge about the

effects of fertilizers and to provide material for an Intelligent rationing

system for fertilizers?

As another example, I was in a group that studied two common methods of

surgery for duodenal ulcer--vagotomy (cutting the vagus nerves) plus a radi-

cal antrectomy (which removes the lower portion of the stomach) versus

vagotomy plus the milder pyloroplasty (which widens the outlet of the stomach

to provide better drainage). 15. ). \L4• ;- O A'IN-,Jo• F;
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We found four experiments that appeared to have been carefully done

and properly randomized. We could have come across a number of comparisons

that were well done but not randomized--the type sometimes called observa-

tional studies. Since often we cannot use randomization and have to make a

comparison without it, I would have been interested in including the obser-

vational studies so as to learn whether they agreed with the randomized

s tudies and if not, why not? But the medical members of our team had been

too aell brought up by statisticians, and refused to look at anything but

randomized experiments. In this type of strgqry, we may expect the experi-

rnent to be of different designs and perphaps differing numbers of replications.

The second type of application occurs commonly in agriculture. It

differs from the first in two ways. It is known that the relative perfor-

mance of a treatment (variety of a crop or fertilizer) is likely to vary

* both from field to field within a year and from year to year. Thus experi-

ments are likely to be repeated in different fields and for a number of years.

Secondly, there is a better chance that the experiments, being jointly planned,

are of the same design and number of replications. For instance, when the

growing w: sugarbeets was introduced into Britain after World War I, the

government conducted 3x3x3 factorials (ultimately 30 per year) at the 'leading

centers for a number of years.

The objective of the experiments may be a series of decisions as to which

varieties of a crop look promising and should be kept for further testing,

which varieties should be discarded, and which varieties having been fully

tested, should be part of an approved list and have their seed made available

to farmers. As an example, Patterson and Silvey (5) have described the trials

of varieties of cereals that Britain has conducted in recent years, the

22
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designs being incomplete blocks. This kind of screening program is not

confined to agriculture. Xt may be used in seeking the best drugs or

vaccines for some purpose in medicine, or in seeking persons best capable

of doing sane task. In 1963, Federer gave a bibliography of sane 500

papers on screening programs.

2. Miscellaneous Experiments in Exploratory Work

I'll start with exploratory experiments done by different people at

different places and times. Since these experiments were not planned as

a coordinated series, we must expect them to differ in designs, and in

numbers of replications. First we must think of the question: of what

population, if any, can these experiments be considered something approaching

a random sample? Is this population relevant to future applications of any

conclusions that we draw? In some oases we may reluctantly conclude that

the experiments do not sample any population of interest to us, and decide

not to prepare any smnary. In some cases the experiments are so variable

that some must. be thrown out before any summary is attenited. The way in

which the experiments ,were done also affects the nature of the population

that they sampls. The nature of the experiments also affects the kind of

population that they sample. in the National Academy study of saccharin

to which I referred, the doses in the laboratory experiments were so large

I' that the estimates of the effects of more normal dose5 depended to a

substantial extent on the kind of model used in extrapolating the experi-

mental results. In experiments comparing two methods of surgery, the

experiments may be confined, for ethical or logical reasons, to the kind

of patients whose doctors state beforehand that they can safely take either

method of surgery. Otherwise, it is difficult to interpret the results of

the experiments. This restriction affects the character of the population

to whom the conclusions apply.

In agriculture, as I have stated, we have to contend with variations

in both space and time: But in other fields of application there may be

v no strong reasons to consider time as a separate source of variation, even

though the experiments will have presumably been done at different times.

So in considering a sumnary of miecellaneous exploratory experiments, I

shall combine time and space and speak of treatments x planes.
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experiments interactions for the ith Treatment in the Jth experiment. We

may also expect experiments to have different variances a per observation

and to differ in number of replications nj.

For the jth experiment, a model that seems reasonable with a quantita-

tive response is that the mean of the ith Treatment in the jth experiment Is

it i i +t 1 +Yij +ij

where Yij Is the treatments x experiments interaction and the variance of

the error term e11 is a/n 1 j (I - l,2,...,t; j -

In a combined analysis of these means, a reasonable first step is to

form a two-way treatments x experiment table of these means. If all treat-

ments are present in all experiments, an analysis of variance into the

following components should be easy.

df
Experiments (k-i)

Treatments (t-l)

Treatments x Experiments (t-1)(k-1)

Pooled error

The purpose is to test the interaction. If some treatments are missing from

some experiments, a least squares analysis appropriate to missing data is

used. In this case the Treatments line is Treatments, adjusted for experiments.

The pooled error in the analysis of variance of the treatment means is

(1/k)(s2/n ), or if the s2 seem to be homogeneous, s2(l/n). We will want

to examine whether the s• appear to be heterogeneous, since this affects the

F-test of the ratio treatments x experiments/pooled error. For this we can
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use Bartlett's test, or it the data seem nonnozral and we want a more robust

test, we can use Levene's test, based on the absolute value of the deviations
;' 82 ,

that lead to the s that appears to be less affeoted by nonnormality. If the

52
_ seem markedly heterogeneous, the F-test of the interactions against the pooled

error is not exact, but assingring a number of df to the pooled error by

Satterthwaite's approximation should provide an approximate test.

The next step is to reach one of three decisions about the Treatments x

experiments Interactions. (1) that It is negligible, (ii) that it is not

negligible but has no discernable structure, By this I mean that although

the effects of the treatments vary from experiment to experiment, we have

no Information formaking different predictions in different parts of the

population and must draw single overall conclusions about the effects of the

treatmentA(igThe third case is that in which the interaction Is of a nature

that we think we understand, and is large enough so that different treatments

win in different parts of the population that can be described. In this

case we expect to recommend different treatments for different parts of the

population.

Consider first case (I) in which we Judge that the treatments x experi-

ments interactions are negligible. If the experiments differ in number of

replications and in their error variances, a question to be considered Is:

Should the treatment means ii individual experiments be weighted in forming

the overall means, so as to give more influence to the more accurate experi-

2ments? If so, what should the weights be? If the error variances a2 were

known, the weights should presumably be wj 2 /nj, but the variances are
1 are3j

only estimated, unless the a2 appear to be equal so that weights nj can be
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ised for the treatment in the j th experiment. Various authors have worked on

this problem of weighting with fallible weights.

The first step is to find out if there is much gain in accuracy from

2the use of weighted means. If the s( appear to be homogeneous, and the

weights are the known values n /i2, this can be done, because the ratio of

the variance of the weighted to the unweighted mean of the Ytj is

(Jwj)(I 1/wj)/k. For instance, if one-third of the experiments each have n

with relative values 1, 1/2, 1/4, the relative value of the variance of the

weighted to the unweighted mean is 36/49 - 0.73. The situation is less

favorable to the weighting if the a differ, so that we have to use something

lie estimated weights nj/. Under normality, the maximun. likelihood estimateK: ~~~~li~ke etmtdwihsn/

of the overall mean pi is

nij(fj - I) ,

Sf s + nj~yi1  - Uii

This hat to be found Iteratively. In this type of estimate, an experiment

with low s 2 And apparently high preclsion is prevented from dominating the

overall mean if it disagrees markedly from the value suggested by the other

experiments, since the term nj(9tj - ^1)2 will be large, and will decrease

the weight given to this experiment.

Some years ago, C. R. Rao (7) brought out a new method of estimating

variances and variance components called the MINQUE (minimum norm quadratic

unbiased estimator). Since I have been interested in this problem for over

40 years, I asked J.N.K. Rao of Carleton University and P.S.R.S. Rao of the

University of Rochester if the MINQUE method woulu lead to improved estimates
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of the weighted mean. Both men looked into the problem--J.N.K. Rao in the

case with no treatments x experiments interactions which is now being con-

sidered and P.S. Rao in the case in which we assume a random treatments x
2"experiments interaction with variance a , which also has to be estimated.

Both men discovered what I had suspected in working with MINQUE--that If one

"is trying to produce an improved method of estimating variance components,

it may not be wise to make the estimates unbiased. With unbiased meth~ds

one may get variance component estimates that sometimes take negative values

and have large variances. Both men produced adjustments to MINQUE that are

essentially positive. J.N.K, Rao's method (8) uses non-iterative weights

rather similar to the maximum likelihood weights. The weights areV ,

wj m nj(fi + 1)/Cfjsj + nj(C1 j - 91J2-,

S - ,where ji is the unweighted mean of the.;ij. Some limited Monte Carlo studies

have shown that the weighting does better than the maximum likelihood estimates

of the treatments means except when differences in the error variances are

extreme. This estimate also does better than MINQUE and better than the

sirrple weights wj /S and is probably the best found thus far.

For estimating the gain in accuracy from the use of erroneous weights

like these, the previous figures for the relative accuracy of weighted to

unweighted means must be reduced, because of sampling error in the weights.

The dampening factor depends both on the average df with which s are esti-

mated, and on the amount of heterogeneity in the weights. For the previous

example with weights proportional to 1, 1/2 and 1/3 in thirds, and 1.36 if

the weights are known, the dampening factor is approximately (f + 6$? + B).*

where f is the average nruber of df,.ti S.
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Thus if the s have 6 df on the average, the relative efficiency of weighted

to unweighteU means is estimated as (12)(1.36)/(14) a 1.18--a rather modest

gain from weighting. Before resorting to weighting, check also that weighted

means apply to the same population as unweighted meann. For example, if the

weights tend to be high when the mean yields of the experiments are also

high, we may conclude that the results for weighted means apply to a popula-

tion having a higher mean yield than our actual population and decide not to

use weighted means.

For comparison between the estimated means of the treatments, we need

standard errors. With unweighted means, the estimate of their standard error

is /t(sj/nj)/k. With the experimental error variances of the individual

experiments taken as homogeneous, the estimated variance of the mean weighted

as n i is s2 /Enj. For Rao's estimate with fallible weights, Rao (8) has given

a rough estimate of the variance of this weighted moan, which also implies

a darpenLng factor for the fact that fallible Peights are being used. The

Jackn .e estimate is another possibility,..

When the treatments x experiments interaction is significant, we need

to see if we can understand the •iature of the interaction. For this, a two-

way treatments x experiments table of residuale Is helpful. Sometimes there

is no winner; different treatments appear to win in different parts of the

population, but either we do not fully understand the interaction or do not

wish to use it in a recommendation. .:;omtimes there are two distinguishable

parts of the population in which the ranking of the treatment is different,

and we understand whny. Studer t (10) cites an example. After a long series

of experiments, the Irish Department of Agriculture introduced Spratt-Archer

barley as the best s,.Ited to the country. In one couty the farmers refused
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to grow it, claiming that their native barley was superior. In order to

convince these farmers, the Department of Agriculture made some special

comparisons in this county of the native barley versus Spratt-Archer. To

their surprise, the native barley was superior. The reason also became

clear. This barley is a quick-starting variety. Now in this county,

farming is rather lackadaisical, so that the weeds flourish. The weeds

tended to smother the Spratt-Archer barley, which starts slowly, but -%he

native, barley, starting quickly, could smothar the weeds. Another maxim

from this example is make sure the experiments sample the population to which

their results will be applied.

If thev'e are two parts which have k1 and k2 experiments, the following

breakdown of the interaction is relevant

df

Treatments (Part I - Part II) (t-l)

Treatments Part I experiments (t-1)(k-Il)

Treatments Part II experiments (t-l)(k2-1)

In this breakdown, we expect the first term to be large and the other parts

small. In addition, we need to analyze parts I and II separately, in order

to see if there are aefinite treatments differences in each part.

If the interaction is significunt and is assumed to be random, the

2 2variance of a treatment mean in an individual experiment is (a . + a An ),
which moves nearer equality because of the term Oa but also means that an

extra parameter has to be estimated if weighted means are contemplated. In

a Monte Carlo study by P.S.R.S. Rao, Kaplan, and Cochran (9) several types

of weighted means including a revised MINQUE were included but the unweighted
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2I
mean proved very hard to beat, as might be expected, unless a2  is
swall and the variation in the a2 is extreme. Use of the u ighted

mean has the advantage that an unbiased estimate mean of the variance

of the overall mean of a treatment is E(yij - y) /k(k-1).

If the original observations are in proportions, remember that a

decision, e.g. whether a single overall mean has enough advantage overall

over the other means to recommend it, or whether two means should be

recammended for different parts of the population, must be made in

proportions. If the combined analysis is made in sane other scale,

such as angles or logits, because it is thought nearer to normality or

in some ways more suitable, remember that means in the original

proportional scale will be slightly biased when we transfer back.

Quenouille (11) has given approximate corrections for this bias, which

do not appear to be well known. Let s be our estimate of the variance

of E (where z denotes the transformed scale), that is, the mean in the

transformed scale. If an angular transformation is used, Quenou•ille's

correction for bias in the transformed mean is to increase sin2 z by

l(i - e-2i )cos (2i). If logits are used with equal weights, the

usual procedure is to take p - ez / (1 + ez) when transformirng back

to p. Quenouille's correction for bias is to add (n-.1)s 2 /2n to Z before

taking ez / (L + ez).

3. Variations in Both Time and Space

This situation is likely to occur primarily in agriculture. Since

the experiments are likely to be Jointly planned, they may have the same

designs and number of replications, the same experiment being repeated

at the same place for four or five years. As mentioned, the number of
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years will camionly be limited to at most four or five, since a larger

number slows up any recommendations. But the experiments may not have

the same nunbers of replication - more may have been added in later years.

"In varietal trials, a new variety may be added in the second or third'

years, so that different treatments may have different numbers of years

at any given time. However, unless the nunbers of replications differ

greatly, a preliminary ahalysis of the treatment means will usually be

adequate and is fairly easy, although there are extra complications and

full least squares may have to be used if sane treatments are only present

in the later years.

It will usually be necessary to treat the treatments x years

variation as random, with variance aty . even if it does not act likety
a random variate. A good deal is known about the influence of weather

on crops, and we may have found, for instance, that in a good year

the best treatments have a greater advantage, so that the treatments x

years interaction is definitely not random. But a superior treatment

before recomiendation, must be superior, on the average, over a span

0f years, taking a into account, since we cannot reccomend a differentty

breatment for different years.

The preliminary analysis of variance and the expected values of the

means squares are shown below. I have treated the treatments Y places

interactions as randcm as well as treatments x years, since this is

usually the assumption that has to be made if it is a question of

reccmmerxding the overall use of one treatment.
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F
df Expected value of mean squares

Treatments (t-l) a +n + npat + ny +

T x Y (t-;)(y-1)- 2 + n2 p+ 2

2 2T x Py1 + zn::~'p y + y

iPooled error a

In presenting the expected values, I have taken the siiplest case,

in which all experiments are of the same size and design, the symbols n,

t, p, and y standing for number of replications, number of treatments,

number of places, and number of years. The symbol F2 is, of course,

the true pooled error variance. The MStpy is tested againt error, and if

F is about 1, this mean square may be combined with the pooled error.

The expected values are written as if treatments are also random, with
2

variance 2t. If the effects of treatments are fixed, as they usually are,

2 2 2replace c2 by what is usually called s (t-f)2/(n-1).

Frc= the expected values it is clear that the treatments x years

and treatments x places interactions are tested by an appropriate F test

(approximate if a2 varies from experiment to experiment) against the mean

square for the tpy three-factor interaction, and that an unbiased estimate

of ~ty is (MSty - Mstpy)/np. For the main effects of Treatments, no

single line in the analysis of variance is a'proper error. An unbiased

estimate of the error variance for the error of a treatment mean, if

interactions are present and random, is

Mstp + Mty - M'tpy

32

.........



p-A

and an approximate F test of the treatments mean square my be made

by taking F - MSt/(MStp + MSty - MSt), with Satterthwalte's

approximation used to ascribe a number of df to the denominator.

However, in a small Monte Carlo study of experiments, Hudson and

Krutchkoff (13) found, somewhat surprisingly, that a rival

•:•,:,.F n (MSt + MStpy)/(M~tp + MSty) using Satterthwaite, had scoewhat

better power and recamunnded it, although it did not approximate the

5% and 1% levels of F when the null hypothesis was true.

Since whether we recommend one treatment, two treatments or suspend

.Judgement for some reason depends mainly on how the treatments vary in

effects from place to place, the two-way table of treatments and places

*; deserves careful study. The treatments x places interaction is

: srometimes heterogeneous; some compariscns of some treatments have a

higher mean square interaction than others. Subdivisions of the

treatments and places and the treiatments x places sum of squares should

be tried.

Thus, as we have seen, the summary of a series of experiments calls

mainly for experience In the analysis of variance, which we now have.

It is well to adopt something of the attitude in exploratory analysis

and be on the lookout for anything unexpected,since the nature of the

tp interaction Is often a hard thing to puzzle out.
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ROBUST FILTERING AND SMOOTHING OF TRACKING DATA

WILLIAM S. AGEE and ROBERT H. TURNER
Mathematical Services Branch
Analysis and Computation Division
White Sands Missile Range. NM 88002

ABSTRACT

Robust methods provide a fresh approach to the problem of treatment of
wild observations in filtering and smoothing problems. The robust M-esti-Smates of regression are extended to filtering and fixed lag smoothing om-
playing a pseudo-density of ihe observations in a conditional mean deriva-
tion of the filter and fixed lag smoother. These robust methods have been
applied to simulated and real trackin data to obtain improved estimation
performance in the presence of wild observations.

INTRODUCTION

Robust filtering and smoothing are a natural extension of the robust
H-estimates of regression developed by Huber [13. The robust H-estimates
provide a natural treatment of outlying observations and have been ex-
tromely successful in dealing with outliers in other data reduction pro-
blfesh2 and [33. The extension of the M-estimate methods provides a
fresh approach to the problems caused by outliers In filtering and smooth-
itng applications. Robust methods for estimatitn are designed to perform
we I when observations from contaminating distributions are present. The
conventional estimation techniques of least squares, maximum likelihood,

-I Iftinimum variance, etc. may become useless when the observations are con-
taminated by gross outliers or wild data points. When using these esti-
mation methods, outliers are often treated by testing the residuals. If
it is decided that a residual is statistically too large, the corres ond-
ing observation is declared an outlier and is not processed. These po-
thesis testin, methods are oftod successful if only a small number of out-
liers are presint but breakdown for larger proportions of outlying obser-
vations. Also, in order for outliers to be detected, they must be re-
latively large compared to the measurement noise. The detection methods
based on testing of residuals are relatively insensitive to small outliers
which leads to an inflation of the mean square estimation error. Thus,
methods for treating outliers should be evaluated on their ability to
achieve a small mean square estimation error as well as their ability to
offer protection from gross outliers.

Very little development'has appeared on the application of robust
estimation techniques to filtering and smoothing. The most notable work
in this direction is that of Masreliez and Martin [43. Their development
of the application of M-estimates to the Kalman filter is mainly theoret-
ical. The emphasis here is on the development of some practical results on
the application of H-estimates to filtering and smoothing. We have ap-
plied these methods to filtering and smoothing of tracking data from tra-
jectory measurement systems at WSMR, Using simulated tracking data we
have also performed extensive Monte Carlo evaluation of filtering methods
based on M-estimtes to determine the conditions for which we can expect
to benefit from the application of these methods.
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-1-ESTIMATES FOR REGRESSION

Given scdlar observations y1, i - 1. N of a linear model
Y YiX Iyl - xle+6e1 (1)

ahere Xiis a row vector of known independent variables and e* is a random
error term we want to estimate the unknown p-vector, 6. The M-estimate
of a minimizes

0
P (yj t Xe)/ (2)

where o(,) is a specified function and s is a robust measure of dispersion
of the residuals, y, - Xie. Minimizing (2) by differentiating with respect
to S gives.

1 x * - x1e)/s - (3)

where *-is the derivative of p and a is tie H-estimate of 9. .(3) is the
analog of the normal equations in least squares estimation. 0 is computed
iteratively by applying a weighted least squares algorithm to (3). For
details seea ..

"Rather than specifying the function p, M-estimates are usually de-
scribed by specifying the function s. Several * functions have been pro-
posed in the literature. The only * functions considered here are varia-
tions of the one proposed by Heamps1 EQ. The' Hampsl * function with break-
points a, b, c, denoted by Ha(ab, c) Is givep by

x ,Ixl a
*(x) - a sgn(x) a-Ixilb (4)#((-c.agn(x)}/(b - c) bi-x[c-4)

Ixitc

a b c

IHumpel ,

The M-estimates can also be applied to regression problems having vector
observations and to nonlinear regression problems. If the 'probability
density function p of the observations is related to s by pl/p a -*, the
resulting M-estimate is maxim.,m likelihood. For any * function we call
.I-pa pseudo-density and derive filters in some conventional ways with the
density function of the observations replaced with a pseudo-density.

APPROPRIATE NON-GAUSSIAN FILTERING

Assume that the Sataex(k) of.the process being observed is governed
by the discrete linear model,

x(k+l) - *(k•l,k) x(k) + u(k) (5)
36
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where the state vector x(k) is an n-vector, u k) is a Gaussian state noise
vector with zero mean and covariance q.k). * k+l,k) is an n .x n state
transition matrix. Scalar observations, z(,k), of the process are given by

z(k) s H(k)x(k) + v(k) (6)
where H(k) is a row vector and v(k) is a measurement noise error which may
be contaminated by outliers.

In order to derive robust filters corresponding to the M-estimates of
regression, we use the results of Masreltez [63 on approximate non-Gaussian

filtering. Musrellis obtains an approximate condit1tor-al wan of p(x(k)JZk)

where Zk is the collection of observations, Zk a Uz(1), z(2), --- ,z(k)

Using Bayes rule p(x(k)IZk) is given by

p(x(k)JZk) - o(zkx(k))o(x ) (7)
P (Z(k).1kZ k'1x

In orderkto derive a useful approximatlon to the codttona 1 mean,

[[x(k)IZ'. of (7). Masreliez assumes that p(x(k)jZ) is Gaussian with
mean ;(krk-1).and covariance P(k,jk-l). The resulting approximate condi-
tional mean, x(kjk) Is given by

;(klk) a ;(klk-1) + P(klk-l)HT (k)g(z(k)), (8)
where g(z(k) is the scalar

Sg(z(k)) - (z'(k),zk'1)+- '(z(k)IZ 'W) (9))

Masreliez also dirivu the second moment, P(kjk), of p(x(k)IZk)b The re-
sult is,

P(klk) * P(klk-1) - P(klk-1)HT(k)Q(z(k))H(k)P(klk-l), (10)
with

S(z(k)) - (11)

A second method for approximate non-Gaussian filtering, is the.margi-
nal maximum likelihood filter. In this case we find the estimate x(kQk)

ahtch maximizes (7). In this derivation we also assume that p(x(k)jZk'l)
is Gaussian. The resulting equation for ;(kjk) is

T )p(.ztk~l ,*(kI• (2 Ii
;h (ýk)kw X* (kjk-l) - P~l-) kP~j~ikk (12)
eho estimate given by (12) Is of the Sam'e form as the conditional mean esti-

nate given by (8). The difference in the two estimates is that the right
hand side of (12) depends on x(k4k) while the right hand side of (8) depends
)nly an the predicted esthmate, x(klk-1). Thus, (12) requires iteration to
Mbain the estimate and if in the first iteration of (12), we substitute

x(klk-1) for x(ktk) on the right hand side, the resultihg estimate on the
first iteration will be identical to the conditional mean estimate of (8).
Thus, the maximum likelihood filter may be regarded as a correction to the
conditional mean filter.
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ROBUST FILTER EQUATIONS

The robust filtering equations correspondtnc to H-estimates are obtain-

ed by replacing the density function, p(:(k)lZk a), in (9) or (12) by a

pseudo-density, e'0, where p' Is a desired In-

fluence function. This substitution results In the following iquatitns for

the conditional mean robust filter.

.;(klk) = (klk-l) + P(k-.)H (k) -k W ) (13)

P(Lk)-P(k-1)," (.•I4ýk)/Skz)P(kIk')T(k)H(k)P(klkh1),(14)

thore *1 Is the derivative of * and r(k) a z(k) - H(k);(klk-l). The filter

rquations arec'ompleted by the usual Kalman filter equations for the'pre-
icted moments.

In order to insure the robustness of the filter described by (13) and

(14), the dispersion sk of the predicted residuals must be specified so

that it is insensitive to outliers. We used the MAD estimate of sk Com-

puted from past residuals as

whee ~umeian j;(..J a T(kaj)^(k..lkJ-1i) J/.6745 (8k =-,N-1

where N is a suitably chosen integer.

The robust maximum IIkelIhood f I tir is obtained by replacing the den-

sity p(z(k)lZkal) in (12) by a pseudo-density.' The resulting filter is

given by

k(k1k) -k(kik-z) + -I(k)(klk)\ (16)

In (16),we use M(klk-l) to denote the mean df p(k(k)IZk'l). We use (14) to

compute P(klk) and use (13) to compute x(k k). Stveral simple methods are

available for the iterative solution of (16). The simplat of these is to
use

x~k k) i kk-1) + (17)

Sk k k

starting with ;(k•k) a ý(klk-l) so that the first estimate xkk) is the

conditional meah estimtse. i(kik).

EVALUATION OF THE ROBUST FILTER

Evaluation of the robust filtering methods described above was done

with a view toward eventual application to trajectory estimation. The

emphasis in the evaluation was on simulated rather than real trajectory

data. This allows a quantitative determination of any advantages in the
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use of robust filtering in the presence o1' outeiars ano aiso any ioss in
efficiency using robust methods when no outliers are present. The simu-
lated trajectory is that of a constant velocity, level flying aircraft.
The measurr:,ients are of position in each of three r.artesian components
with addad measurement noise which is contaminated by outliers. The filt-
er model assumes the trajectory to have constant acceleration in each co-
ordinate. The filter for each coordinate has a small acceleration state
noise, Q(k) a 6. The outlier contamination is controlled by a two state
Markov chain with a transition possible at each measurement time. An out-
liar Is added to the measurement if the Markov chain is in state two and
no outlier is added if the chain Is in state one. The transition prob-
abilities, Pi3, are used to determine the percentage of outliers contam-
inating the measurements and also the length of runs of outliers It the
measurements. The magnitude of the outlier contamination is C • yR, i.e.,
a constant multiple of the measurement noise standard deviation.

Using the simulated trajectory data a Monte Carlo evaluation of ro-
bust filtering was performed. The rms estimation error was computed point
wise for position, velocity, and acceleration using a sample size of
twenty-five. The plots of the rms errors for each of the conditions test-
ed requires far too much space to present here. Instead, these results
are summarized by time averages of the rms error in position and velocity
for each of the conditions tested.

Figure. 1 compares the average rms position error for two filters u4-
ing the Hampel * functions Ha(2, 3, 4) and Ha (4, 4, 4). Figure 2 gives
the rms velocity error comparison for the same two filters. Also indi-
cated in Figures 1 and 2 are the ideal rms error values which were obtain-
ed with an ordinary Kalman filter with no outliers present and using a
known masurement covariance, Rk a 400. . The Monte Carlo evaluation of

figures 1 and 2 was made with a measurement noise standard deviation of

S20 ft. was unknown to the filter.

We note from figures 1 and 2 that neither of the robust fllteri lose much
efficiency from the ideal values when no outliers are present. The er-
ror curves in figures 1 and 2 behave as expected. Since outliers small in
relation to the measurement noise are hardest to detect, the error curve
rises sharply. Outliers large rel&tive to the measurement noise are easy
to detect so the error curve returns to zero for large outliers."i r~ie I pie Itl, ,leit

,* N..
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We see from figures 1 and 2 that Ha (2, 3, 4) has a significantly smaller
mean square error than Ha (4, 4, 4). Except for the way in which the dis-
persion of the residuals is measured, i.e., the MAD estimate in (1s),
Ha (4, 4, 4) is a conventional way of handling outliers in a Kalman filter-
ing application. Using Ha (4, 4, 4) any observation whose predicted

39



residual is greater than 4 . s is not processed and any observations whose
predicted residual is less than 4 • s is processed as an ordinary Kalman
filter observation. The above Monte Carlo evaluation was made with Markov
chain probabilitiep P21 a .05 and PIZ - .5 which gives an out.ier probabi-
lity of.088 and.an average outlier run length of three. In order to re-
duce the average rms errors, we pull in the bretkpoints of the Hampel *
function. Figures 3 and 4 compare the aver& . ms errors in position .nd
velocity for the Ha (1o 2, 3) and HI (2, 3. P).

S 04 I Ir '"4i

Figures 3 and 4 were made using the same'outlior proportions and measure-
ment noise standard deviations as figures 1 and 2.

The iterated filter*, I.., the approximate maximum likelihood filter
given by (14), (16). and (17) as also evaluated under the same conditions
as the conditional mean filter. Comparison of the average mean square er-
rors for the conditional mean and maximum likelihood filters showed no
discernible differences.

ROBUST SHOOTHING

A simplified robust, fixed lag smoother, wat derived in a similar
manner to the robust conditionel mean filter derivation. We derive an ap-

proximate conditional mean, the densty p(x(k)IZ ) sing
the same methods and assumptions used by Masreliez and us in the deri-
vation of the robust filter. The robust smouthed estimate is given by

. ~ n ,T(tk+j.t H!T(k+J) (Z(k+.!).H(k+t);(k+tlk,.1
x(klk+n) a x(klk)+P(klk-1) z • , ( ,k

Jul %+~J 5k+J /(8
In obtaining (18) the fixed lag smoother has been greatly simplified by leav-

ing out the state noise in the forward interval. x(kjk) in (18) is the ro-
bust filtered estimate described by (13) and (14). ik+j is a robust measure

of dispersion of the residuals, z(k+j)-H(k+J);(k+jlk-1). Severol possibi-
lities exist for computing a useful dispersion measure. sk+j. The simplist

method and the one used to obtain the smoother evaluation given below is to
make sk+J a constant s k÷j sk and then compute sk by (15).
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A Monte Carlo evaluation of the simplified fixed lag smoother was
performed using the same simulated trajectory as was used for the filter
evaluation. Measurement noise having a standard deviation of 50 feet was
added to the simulated positions. The measurement noise standard devia-
tion was unknown to'the smoother. The forward smoothing interval had a
length of n a 20 which represents a one second smoothing time. The out-

* liar proportions and run lengths were the same as for the filter oval-
* uatlon. A sapl, size of ten was used for the Monte Carlo evaluation of

the smoother.

Figures 5 and 6 display the average rms position and velocity esti-
mation errors obtained using toie robust, fixed lag smoother with the
Hampel * functions, Ha (2, , 4) and Ha (4, 4, 4). Also noted in fig-
ures 5,and 6 is the 1ide1 average rms values which were obtained using the
smoother with no outliers and a known measurement covariance, Rk a 2500.

The robust smoother using Ha (4, 4, 4) is representative, except for the
measurement' of sk' of a conventional way of handling outliers in an opti-

mal smoothing application. We note that either of the smoothers offers
good protection from very large outliers but that Ha (2, 3, 4) results in
a signif.lcantly smaller estimation error when small outliers are present.

. 14ill rig .
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ROBUST FILTERING USING GAUSSIAN MIXTURES

Robust estimation methods deweight and/or reject outlying observations
by specifying observational densities or pseudo-densities having long
heavy tails. We can also realize a long, heavy tailed density by using a
Gaussian mixture. Suppose we replace p~z(k)Ix(k)) in (7) or (12) by the
Gaussian mixture pseudo-density,

p(z(k)Ix(k)) r miN(z(k) - H(k)x(k) - a41), Rk) (9
i

where) H(k)x(k) &M1, Rk EXI(zk - H(k)x(kj' 2

We do not require that u 1. Thus, we have individual Gaussians con-

CI I q) 41 8 I•lqw

tere ata nd each havinj ¶ tandard deviation Rk The sum in (19) may be
Infinite. The es timkons Ve and the anplitudes, re, are free parameters.LUsing (19) we obtain p(zpk)Iz W ) as
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p(Z(k)]Zk-1) r *IN z(k) - H(k);(klk-l).41 i),.M(k)P(klk-l)H~k)+Rk) (1

In obtaining (21) we have again assumed that p(x(k)lZk-1 ) is Gaussian.

Substituting (21) into (8) and (9) with the variance of the residuals,
H(k)P(k kI)Hlk)l÷Rk9replaced with an estimated value, skZ, gives

x(klI) • x(kflk-1) + .(kLk-)HTk(z,() - H(k)•(klk-l)-rj (22)

Iin (22) Ilk is the weighted average

where the weights Wt are given by

( Ak) - .(k;(klk-1-a(), ,• . _ k ...../(241 :

The filter' equations (22), (23). and (24) are Identical In form to the
simplified pseudo-Bayes filter by Ackurson and Fu [7] for adaptive filter-
'ng when the mean of the measurement nofse is unknown. Using (10) and (11)
the conditional covariance is

1)i

P(klk) *P(kik-1) -P(kjk-l )H(k)(i/" -*ý ~ ) Hk) P ('k k. 1(25)

where

(k -'ak) I V(i) rk )26

Although the above sums may be thecretically infinite, we only ned
to calculate the relatively few terms in the sums which have significant
values of the weights, W1. Thus, wu compute only those terms In the sums

for which jz~k)-H~k)'(kjk-l)-&(1)i/1 ! 4. With this simplification the
amount of 2xtra computation required to implement this robust filter is

rtlatively small. The locations, a( ), produce a smooth pseudo-density
k (0)

if they are chosen as zero and odd integral multiples of Sk' ak
a t) . sgn(1)(21i( - 1 -Wk, l - 1. We have also tested the filter with

[it ' •, -i -1 0. The value of'the residual dispersion, sk, is
still computed by (15). Several different choices of the amplitudes have
been testad. The most extensive testing has been done with ei 1 and
s "l(III + ). 42



Some robust filters using the Gaussian mixture formulation were also
evaluated via Monte Carlo testing. These filters were tested using the
same simulated trijectory data and under the samc outlier and measurement
noise conditions as-the robust filters using Hampel 0 functions. The sam-
•le size for Monte Carlo was twenty-five, the Markov transition probabi-
ities were P2 - .05 and P12 a ,5 and the measurement noise standard

deviation, which was unknown to the filter and estimated by (1l5, was
v, 20 feet. Figures 7 and 8 present the average rms position and velocity

errors for a -Gaussian mixture filter with observations contaminated by
various magnitudes of outliers. The Gaussian mixture filters usea/ in gen-

*rating Figures 7 and 8 used magnitudes of the Gaussians, s " 1/a(iil + 1).
Two different Gaussian mixture filters are represented in Figures 7 and 8,'
one with Gaussians at all integral multiples of sk and one with Gaussians
at zero and odd integral multiples of Sk.u r., *

ko rig I.12
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Each Gaussian component of P(z(k)jZ *) has standard deviation k. There

i s very little difference in the estimation errors obtained for the two
-1 filters of Figures 7 and 8. The filter with Gausslans at.only the odd

multiples of sk is computationally less complex. Figures 9 and 10 give

the results of the Monte Carlo evaluation of a Gaussian mixture filter
which places Gaussians at zero and odd integral multiples of s with ampli-

tudes , (21 a I• V1,r.
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This filter appears to give somewhat -smaller errors than the other Gaus-
sian mixture filters and also slightly smaller errors that the robust
filter which uses HaOl, 2. 3). We note that'using mi - 1 with Gaussians

at all integral multiples of sk does not result in a useful filter since
it %as a zero influence function ano therefore does not produce any error
correction. 43



CONCLUSIONS

Two methods based on M-estimates have beeti presented for robust filt-
ering and smoothing. one using the Hampel * function with various break-
points and the other which models the observation error as a Gaussian mix-
ture. These robust filtering methods were subjected to a Monte Carlo
evaluation using simulated trajectory data frao an aircraft tracking ap-
"plication. The results of this evaluation show that both of .these robust
filtering methods give a significant reduction in average'mrs estimation
error for small outliers compared to a more conventional way of treating
outliers in an optimal filtering application. The tests also suggest that
the Gaussian mixture robust filter methods offer the most promise for ap-
plication and future testing. Further evaluation of robust filtering
methods under more severe trajectory applications are necessary.
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COMPOUND FREQUENCY DISTRIBUTIONS

A METHOD FOR ESTIMATING STATISTICAL
"A •PARAMETERS FROM AN ADULTERATED SAMPLE

Donald W. Rankin

Army Materiel Test and Evaluation Directorate
US Army White Sands Missile Range

White Sands Missile Range, New Mexico 88002

ABSTRACT. %ben a sample is contaminated by extraneous "outliers",

computation of the higher statistical moments may contain large errors, The

proposed method treats these "outliers" as members of another "unwanted"

population, and assumes that they perturb the distribution minimally near

the maximum ordinate (mode).

The distribution is studied only near this maximum ordinate. A simple

curve (a parabola, say) is fit by the method of least squares and the various

derivatives are evaluated at this maximum ordinate. Not only the usual statis-

tical parameters (mean, variance), but also the proportional number of "outliers"

turn out to be expressible as simple functions of the3e derivatives.

I. THE PROBLEM

Statistical analysis usually requires that certain a priori assumptions

be made; e.g., a certain population is normally distributed. From time to time,

however, a test will reveal that a sample has been drawn which is incompatible

with the basic assumptions.

An example which quickly comes to mind is the distribt'tion of•" erial

bombing scores. For many samples, the assumption of a normally distributed

population appears to be invalid -- frequency in the "tails" is far too high.
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Before abandoning the postulation of normality, let us address the

problem from a different point of view. Keeping the example of aerial

bombing scores, suppose that in a sample of, say, 100 bombing runs, the

bombardier misidentified the intended aiming point on ten occasions. It

is obvious that only 90 scores will be drawn frvm the "correct" population

(i.e., the population for which we have postulated normality), while the

remaining ten will come from populations with displaced means. To choose

terminology, we shall say that the sample Is adulterated by the ten runs

from unwanted sources.

How the density function is affected by mixing different populations

is seen in Pigure I. The lower curve is simply the normal curvo in which

a w 1 and N - 100. Adding adulteration from two extraneous populations

Cci * 1,• -2, N * 20, anda- 1, p u 2, N • 10) yields the density function

for the compound frequency distribution, illustrated by the upper curve.

It is apparent at once that the "tails" are abnormally thick. It should

also be noted that the density function is deformed least near the mean.

If the mean of the extraneous bits of data is displaced by much more

than 2a , the effect on the center of the sample distribution is virtually

nil. Can the parameters of the desired population be recovered by studying

the sample distribution only near its center?

II. A SOLUTION

The probability density function of a standardized (V * 0, a * 1) normal

distribution is given by

1 e -1/2 Z2

46
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F
Differentiating, we find that

0' (Z) .z -1/2 Z2  and

Oil Cz) =z' -1) -1/2 Z'

Evaluating these expressions at the maximum ordinate, we find that

0 CO)

#' (0) [] oM-1
•" (0) -0

Expressing ( (Z) in series form,

S(Z) I 2+- z-
A IlT1 W- Ur-

It is easy to see that ±or small values of Z -- say IZI<0.4 -- the first two terms

form a sufficiently good approximation. Note that for

Z) Z- - and Z 0,

( CZ) 
z

.48
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(0)

:i I0' CO 0

0" (0) 0 -

In other words, at the point of the maximum ordinate (Z * 0), the approximating

parabola and its pertinent derivatives take on exactly the same values as the

probability density function.

Since 0 (Z) is a probability function,

J 0(Z) dZ w 1.

In an actual case, a sample of size N will be drawn, consisting of N values

of the form Yi.

Hach yi can be thought of as a deviation about a certain origin; i.e., as

an abscissa. Since each yi occurs with frequency 1, we have imlediately

N
f(yi) 1 and •lf(yi) - N.

Let us make two assumptions -- first that the desired population (call it the

"Z population") is ntrmally distributed - second that the extraneous members of the

sample are clustered about points far enough removed from the mean of the Z popu-

lation that the frequency distribution is minimally perturbed near the center.

Let Nz denote the number of members of the sample which are drawn from the

desired population. Let V and a be, respectively, the mean and standard deviation

of the Yi'S of this Z population. Then
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z * • is the standardized variable,

allowing our previously developed expressions in Z to hold. Note that

If we could identify the members of the Z population, we could

determine

Nz f"yy)

merely by counting. This cannot be done. But we note that

-"y () dy Nz

choosing to regard y (without a subscript) as a continuous variable, and thus

considering f(y) as an ordinate rather than as a frequency, we ff.nd,

" Ny) (Z)

f'Cy N z ~Ncy.1) e 2 -

a' 2
-~Nz

I,.

' .5
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Evaluating these at the maximum ordinate (y w ) .e find that

NX

Ii t'(• .0

f 0'(~

-Nqz

N" (U - t 427r

Folving for Nz and a l yieldo two fundtmental expressions.

a -f G(V)

f" (Y)

For actual computation, the form

may be preferab]..

L



It remains to evaluate the mean (1 i3 the best estimate of IA) and the valueu

of the function and Ito second derivative at that point, For this we use

the approximating parabola (least squares fit *),

(y) "KO÷ + KK 2 Y2

f'(y) - K1 + 2K2 Y

f"(y) 2K2

Since f'(7) * 0,

2K2

¾2
and f(Y) " K " K1

2

4K2

of course f"(7) - 2K2

The reader is reminded that the form of the distribution is selected

from criteria gat than the appearance of the raw data. For example,

a distribution which follows (Appendix A. Table 1i Figure nI) Appears to

be tri-modal* due to the presence of many extraneous outlier.s

*.ec Appendix A
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The application of the method of leasnt squares is greatly facilitated

by transforming the independent variabl.e so that its transform has a mean

of 0 and an increment of 1. By way of illustration, in Table 1, y is the

independent variable, f its frequency end x its transform.

3 

y 

x

In terms of the transformed variable x, since .10

(m is any positive integer),

I2

po g~)* + Al x + A

Pi 21
2 4

x 
4

A 1  ~.xf

A2 S~2 2

Table 2 contains numbera useful in computation.
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TAILI 1

A I M ,ICAL SAM.LI DISTRXRL'TION

v fCy) x xf x2 fI

0 0 0 0

3 2 .7 -14 98

-6 -24 144

9 3 -s -1S 75

120 -4 0 0

is 3 .3 -9 27

.8 2 -2 -4

21 4 -1 -4 4

24 2 0 0 0

27 s ' 1 S 5

30 2 2 4 8

33 2 3 6 18

36 0, 4 0 0

39 2 5 10 50

42 1 6 6 36

45 2 7 14 98

48 1 8 8 64

35 -17 635

!I,,ii

-. . . . .
- "



TABLE 2

SUMMED SQUARES AND FOURTH POWERS WITH OTHER USEFUL NUMBERS

2 X4
-iL - -i

S10 34 70

3 7 28 196 588

4 9 60 708 2772

5 11 110 1958 9438

6 13 182 4550 26026

7 15 280 9352 61880

8 17 408 17544 131784

9 19 570 30666 257754

10 21 770 50666 471086

11 23 1012 79948 814660

12 25 1300 121420 1345500

r ,, 3.141 592 654

2v = 6.283 185 307

- 2.506 628 275
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Suppose it in desired to fit a parabola to the 9 central points (Table 1).

- 4, -20, xf -2, Jx 2 f 70

120 601I
A - 70 70 996o - 3.593 074

2772 2772

Al - 2/60 " -0.033 333

2Ii
A6 7 - -570 -0.205 628 j

2772 •2772

- "Al - -0.081 053

2A2

y - 23.756 84

A2
S(x) Ao - A1  3.594 424

4A
2

g" (x) - -0.411 255

"- - 2.95637

d y - 8.86911

N m - ,R -W 26.64 or 27
z
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THE ERROR INDUCED BY ASSUMINC A PARABOLA TO APPROXIMATE A NORMAL CURVE

With no prior knowledge of the value of t', it usually happens that

rather large values of ..y.jL are used to fit a parabola (1.38 in

illustration in Appendix A). When this happens, the computed values of Nz

and tr will be too large. -Z2 /2

Table 3 shows the error induced by the approximation 1 - z2 a

2

The tabular values give the error asi a proportion of g(7), the maximum

ordinate (W- = 1).

If the mean and variance can be estimated (and the first parabola fit

will provide a rough estimate), the error at each value of the independent

variable can be computed. If these error terms are subtracted from the

corresponding frequencies, a parabola fit to these "corrected frequencies"

will exactly reproduce the desired parameters with no residual error

(except that induced by errors in the estimation of u and oa.

Although the correction function is exact, it should be remembered

that on the normal curve there are inflection points at + o", outside of

which the parabola and normal curve diverge very rapidly. This makes

corrections computed for points outside cr dependent upon accurate estimates

of p and or. For example, a 5% error in the esrimate of (-will result in

a correction error at 0.5 (- of only 0.3% of the maximum ordinate, but

3.2% at 1.2 a, -- a tenfold increase.

The histogram of the data from Table 1, with the best-fitting normal

curve and associated parabola is illustrated in Figure II.
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TABLE 3 2 - 1 - Z2

Z2 Z2 Z2 Z2- , Z e"21 i Dt££ Z e"f 1 2f

0.00 1.0000 1.000 00 0.70 .78270 .7550 .02770
0.02 .99980 .9998 .00000 0.72 .77167 .7408 .03087
0.04 .99920 .9992 .00000 0.74 .76048 .7262 .03428
0.06 .99820 .9982 .00000 0.76 .74916 .7112 .03796
0.08 .99681 .9968 .00001 0.78 .73771 .6958 .04191

0.10 .99501 .9950 .00001 0.80 .72615 .6800 .04615
0.12 .99283 .9928 .00003 0.82 .71446 .6638 .05068
0.14 .99025 .9902 .00005 0.84 .70272 .6472 .05552

? 0.16 .98728 .9872 .00008 0.86 .69087 .6302 .06067
0.18 .98393 .9838 .00013 0.88 .67896 .6128 .06616

1 0.20 .98020 .9800 .00020 0.90 .66698 .5950 .07198
0.22 .97609 .9758 .00029 0.92 .65495 .5768 .07815
0.24 .97161 .9712 .00041 0.94 .64288 .5582 .08468
0.26 .96676 .9662 .00056 0.96 63078 .5392 .09158
"0.28 .96156 .9608 .00076 0.98 .61866 .5198 .09886

0.30 .95600 .9550 .00100 1.00 .60653 .5000 .10653

0.32 .95009 .9488 .00129 1.02 .59440 .4798 .11460
0.34 .94384 .9422 .00164 1.04 .58228 .4592 .12308

j' ' 0.36 .93725 .9352 .00205 1.06 .57018 .4382 .13198
r. 0.38 .93034 .9278 .00254 1.08 .55811 .4168 .14131

0.40 .92312 .9200 .00312 1.10 .54608 .3950 .15108

0.42 .91558 .9118 .00378 1.12 .53409 .3728 .16129
0.44 .90774 .9032 .00454 1.14 .52215 .3502 .17195
0.46 .89960 .8942 .00540 1.16 .51028 .3272 .18308
0.48 .89119 .8848 .00639 1.18 .49848 .3038 .19468

"0.50 .88250 .8750 .00750 1.20 .48675 .2800 .20675
0.52 .87354 .8648 .00874 1.22 .47511 .2558 .21931
0.54 .86433 .8542 .01013 1.24 .46357 .2312 .23237
0.56 .85488 .8432 .01168 1.26 .45212 .2062 .24592
0.58 .84518 .8318 .01338 1.28 .44078 .1808 .25998

0.60 .83527 .8200 .01527 1.30 .42956 .1550 .27456
0.62 .82514 .8078 .01734 1.32 .41845 1288 .28965
0.64 .81481 .7952 .01961 1.34 .40747 .1022 .30527
0.66 .80429 .7822 .02209 1.36 .39661 .0752 .32141
0.68 .79358 .7688 .02478 1.38 .38589 .0478 .33809

0.70 .78270 .7550 .02770 1.40 .37531 .0200 .35531
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Interpolation In Table 3 can be avoided by choosing values of w and

)a such that

. 0.02 1
Ir. 

•~

and

. 0.02 R'
0v / .

(R and R' are intagers).

This is a reasonable procedure; since the first estimate of

probably is too high, it is legltizate to choose that lover value which

serves the purpose. Table 4 Is presented for convenience in choosing

Application of the correction technique to the example of Appendix A

is shown in Table 5 and following.
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TABLE 4

VALUES OF WHIICHI YIELD CLASS INTERVALS OF .02ROII
.02 so .32 3.125

.04 25 .34 2.94118

.06 16.66667 .36 2.77778

.812.5 .38 2.631S8

.18 3.57S43 .58 2.78434

.30 3.33333 .60 1.66667
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TABLE 5

CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION

y f(y) x Factor A fAf xCf+Af) x2(f÷Af)

12 0 -4 -1.42

15 3 -3 -1.06 .13198 -0.47 2.53 -7.59 22.77

18 2 -2 -. 70 .02770 -0.10 1.90 -3.80 7.60 F

21 4 -1 -. 34 .00164 -0.01 3.99 -3.99 3.99

24 2 0 .02 .00000 -0.00 2.

27 5 1 .38 .00254 -0.01 4.99 4.99 4.199

30 2 2 .74 .03428 -0.12 1.88 3.76 7.52

33 2 3 1.10 . 5108 -0.54 1.46 4.38 13.14

36 0 4 1.46

20 0 -1.25 18.75 --t.25 60.01

From Appendix A, we have

S--0.081 053

gC•x) w S.594424

ax a 2.95637

1/Cyx a 0.338

for Corr•ection, set: 1/ox •0.36

Then 0.36 •-0.020, set 0.36 x"--0.02

S~62
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It in observed that for x - + 4, the entering argument lies outside the

range of Table 3. This merely means that the original curve fit spanned

t toc much data. The values for x - + 4 are simply dropped from further

calculations.

Pitting a parabola to the "corrected" frequencies, we find

118.75 281
0 60.01 196_ 1994.72 - 3.39238

588 588

Bl - -2.25 - -0,08036
28

7 18.751B2  0 28 60.01 - -104.93 - -0.17845
588 588

x - -0.22515

y4 " 23.32455

g(x) " 3.40143

" (i) - -0.35690

ox 3.08713

cry - 9.26138

N - 26.32 or 26

1 0.324 let 1 - 0.32

0.32 x - -0.072 , let 0.32 x - -0.08
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The consequence here of dropping the data for x +4 Is that rarity,

too small an estimate of i. Another iteration seems In order. See

Tables 6, 7 and following

FUiRTHIER CORPECTIOW 0W A MPOTHETICA IMUZMUENC.Y DISTIBUTION

y f Factor Ag x 2vF x P x2
f +A-

15 3 -. 88 .06616 -0.23 -3 2.77 -8.31 24.93

18 2 -. 56 .01168 -0.04 -2 1.96 -3.92 7.84

21 4 -. 24 .00041 0. -1 4. -4. 4.

24 2 0.08 .00001 0. 0 2, 0 0

27 5 0.40 .00312 -0.01 1 4.99 4.99 4.99

30 2 0.72 .03087 -0.11 2 1.89 3.78 7.56

"33 2 1.04 .12308 -0.42 3 1.58 4.74 14.22

Z2o -0.81 19.19 -2.72 63.54

I19.19 281
Co - 163.,5 196 1982.12 - 3.37095

588 588

C1 - -2.72 - -0.09714
28

S)7 19.191

C2  - J.28 6.SLAI - -2.5 -0.15738
588 588

!6'
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- -0.30862

.. ix - 23.07413
! g(x). 3.38594

9" (-x) = -0.31476

- 3.27981

y;.r - 9.83943

N - 27.84 or 28

1 - 0.305 let 1 - 0.30

0.30 x •-0.093, let O,3x - -0.10

TADLE 7

FINAL CORRECTION or, A HYPOTIETICAL FREQUENCY DISTRIBUTION

y f _- Factor Ag x X

15 3 -. 80 .04615 -0.16 2.84 -3 -8.52 25.56

18 2 -. 50 .00750 -0.03 1.97 -2 -3.94 7.88

21. 4 -. 20 .00020 0 4. -1 -4. 4

24 2 .10 .00001 0 2. 0 0 0

27 5 .40 .00312 -0.01 4.99 1 4.99 4,99

30 2 .70 .02770 -0.09 1.91 2 3.82 7.64

33 2 1.00 .10653 -0.36 1.64 3 4.92 14.76

20 -0.65 19.35 -2.73 64.83
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119.35 .j
Do " • " 3.36286

D1 " • " -0.09750
28

S"'"1

588

x " -0.32578

y " 23.02267

S('x) " 3.37874 :•

8"(•) " -0.29929

e'x - 3.35996

•y - 10. 07988

H - 28.46 o= 28

Checkt

! - 0.298
cr"

x

0.298 • - -0.097

, 66
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APPENDIX C

* EXAMPLES

To test the methodthree samples of size 150 were drawn from Rand's

4 Table* of Gaussian deviates and were adulterated as described.

Problem 1

Sample starts with line 2206, Page 45

First 100 numbers unbiased

Next 35 numbers biased +2.5

Nlext 15 numbers biased -2.0

Class interval was chosen as 0.3, yielding the sample distribution displayed

in Table 8, For the population, p - 0, c- - 1. The "pure" portion of

the sample (N - 100) estimates these parameters as a 0.015, " - 0.943.

The total sample provides the useless estimates p - 0.332, O" - 1.579

The curve-fitting technique provides a first approximation of - 0.059,

a- - 1.025, N - 109. After applying the corrections, the method yields

a 0.062, e" - 0.920, N - 99. Computations are shown in Tables 9,

10 and following.

*The RAND Corporation, A Million Random Digits with 100,000 Normal Deviates,

Free Press, 1955.
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TABLE 8

FREQUENCY DISTRIBUTION, PROBLEM 1

Frequency Frequency
y Unbiased Total y Unbiased Total

Mid-Point x Portion Sample Mid-Point x Portion Sample

-4.5 -15 1 0.3 1 14 14

-4.2 -14 0 0.6 2 10 11

-3.9 -13 0 0.9 3 8 8

-3.6 -12 1 1.2 4 8 14

-3.3 -11 0 1.5 S 3 7

-3.0 -10 2 1.8 6 0 4

-2.7 -9 0 2.1 7 2 S

-2.4 -8 2 2.4 8 14

-2.1 47 2 3 2.7 9 5

-1.8 -6 3 4 3.0 10 2

-1.5 -5 3 7 3.3 11 2

-1.2 -4 6 8 3.6 12 2

-0.9 -3 7 8 3.9 13 2

-0.6 -2 9 9 4.2 14 0

-0.3 "1 12 12 4.5 15 0

0.0 0 12 12 4.8 16 1

68
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TABLE 9

CURVE FIT, PROBLEM 1

y f x xf xOf

-. 9 8 -3 -24 72

-. 6 9 -2 -18 36

-. 3 12 -1 -12 12

0 12 0 0 0
.3 14 1 14 14
.6 11 2 22 44
.9 8 3 24 72

74 6 250

174 28
AV 1 9 12.76190

5B8

A1  " 6/28 - 0.21429

A2  -[2 250a.~ -0.54762
588

x - -Az/2A 2  w 0,19565

f(i) - Ao -Al/4A 2  w 12.78287

6x'- 3.41633

To compute corrections
1/6x * .293, Use 0.32

0.32 W - .063, Use 0.06

y - 0.05870

M - 1.02490
Nz - 109
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TABLE 10

cORUCTED CURW FIT. PROBLEM 1I

y f x Factor Af 9 x x5 x8

Irk

-. 9 8 -1.02 .11460 -1.46 6.54 -3 -19.62 58.86

-. 6 9 - .70 .02770 -0.35 8.65 -2 -17.30 34.60

-. 3 12 - .38 .0o054 -0.03 11.97 -1 -11.97 11.97

0. 12 - .06 .00000 0. 12. 0 0 0

.3 14 .26 .00056 -0.01 13.99 1 13.99 13.99

.6 11 .58 .01338 -0.17 10.83 2 21.66 43.32

.9 8 .90 .07198 -0.92 7.08 3 21.24 63.72

S74 -2.94 71.06 8.00 226.46

171.06 281
Bo -Z .. 6  L 12.90286

B1.- 8.00/28 - 0.28571

7 7 1 .0 6 :0. 8 7 8
B2 - 8 22.L - -0.6878622.6'588 i

S- 0.20768

a - 0.06231

g( - 1.93253

ok 3.06604

0- .91981

N - 99.4 or 99

Check:

1 - 0.326

0.326 - 0.068
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Sample starts with line 5622, Page 113. All other conditions identical to

Problem 1. Results are shown in Table 11, 12 and 13 and foll~owing. The

1purel portion of the sample yields p-0, cr mil.1. the total

sample gives y 0.426, 0 * 1.728.

The curve-fitting technique provides a first approximation of p -0.101,

cr 1.011, N - 112. After applying the corrections, the method yield.

pu -0.106, 0 - 0.908, N -102.

7R0BJLEM 3

Sample dtarts with line 8371, Page 168. All other conditions identical to

Problevis 1 and 2. The "pure" portion of the sample yields jx 0.102,

cr 0.961. The total sample gives p-0.386, a" 1.508.

The curve-fi.Lting technique provides a first approximation of 0 0.123,

-1.230, N -136. After applying the corrections, the method yields

p*0.112, "1.109, N - 123. Results are shown in Tables 14, 15 and

16. It chould be observed that this particular sample contains 5 "bad"

data bits in the interval lxi !Z 0.6, more than 8% of the sample. The

method cannot identify these points, with the result that the campute~d

values of N and cr tend to be too large,although they are still better

estimates of the true parameters than those obtainable from the entite

sample.
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TABLE I1

FREQUENCY DISTRIBUTION, PROBLEM 2

Frequency Frequency

y Unbiased Total y Unbiased Total

Mid-Point x Portion Sample Mid-Point x Portion Sample

-3.9 -13 2 0,9 3 6 8

-3.6 -12 1 1.2 4 11 12

-3.3 -11 0 1.5 5 2 3

-3.0 -10 1 1.8 6 3 7

-2.7 .,9 0 2.1 7 1 3

-2.4 -8 1 4 2.4 8 4

-2.1 -7 0 2 2.7 9 1

-1.8 -6 1 1 3.0 10 1

-1.5 -5 3 3 3.3 11 7

-1.2 -4 9 12 3,6 12 4

-0.9 -3 6 8 3.9 13 4

-0.6 -2 11 11 4.2 14 0

-0.3 -1 18 18 4.S is 1

0. 0 ]1 12 4.8 16 0

0.3 1 8 9 S.1 17 0

0.6 2 9 10 S.4 18 1
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L IABLE 12SUVE PIT, PROBLEM 2

Mid Point x f xf x f

-0.9 -3 8 -24 72

-0.6 -2 11 -22 44

-0.3 -1 18 -18 18

0. 0 12 0 0

0.3 1 9 9 9

0.6 2 10 20 40

0.9 3 8 24 72

76 -11 255

176 281
AO a 1255 1961 M 13.19048

588

Al - -11/28 - -0.39286

1 7 761
A2  - .12_;.5g. -0.58333

588

x• - -0.33673

-f -) 13.25662

05c " 3.37088

4 To compute corrections,

I - 0.297, Use 0.32

0.32i - -0.108, Use -0.10

'9 -- 0.10102

Cry . 1.01126

N w 112
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TABL 13

CORzRCTu cuD w FT. ,ROBM;l 2.

x2
Af f. Factor Af 9 x x$s

Oz

-,9 8 -. 86 .06067 -0.80 7.20 -3 -21.60 64.80

-. 6 11 -. 54 .01013 -0.13 10.87 -2 -21.74 43.48

-. 3 18 -. 22 .00029 0. 18. -1 -18. 18.

0. 12 .10 .00001 0. 12. 0 0 0

.3 9 .42 .00378 -0.05 8.95 1 8.95 8.95

.6 10 .74 .03428 -0.45 9.55 2 19.10 38.20

.9 a 1.06 .13198 -1.75 6.25 3 18.75 56.25

., 76 -3.18 72.82 -14.54 229.68

S72.82 28j

ao 3.± - 13.33619
588

B - -14.54/28 - -0.51929

7 72.821
B 28 229.68 -0.73333

588

x - -0.35406

my - -0.10622

g(i) - 13.42812

o *-- 3.02581

ty- 0.90774

N a 101.8 or 102

Check:

1. 0.330
(x

.330 ir -0-117
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TABLE 14

FREQUINCY DISTUIBUTION. PROBLEM 3

Frequepcy Frequency
y Unbiaed Total y Unbiased Total

Mid Point x Portion Sample Mid Point x Portion Sample

-3.0 -10 2 1.2 4 6 9

-2.7 - 9 1 1.5 5 3 4

-2.4 - 8 1 1.8 6 2 4

-2.1 - 7 1 4 2.1 7 1 6

-1.8 - 6 3 3 2.4 8 0 6

-1.5 -5 4 5 2.7 9 2 6

-1.2 - 4 3 6 3.0 10 4

-0.i - 3 8 9 3.3 11 5

-0.6 - 2 9 11 3.6 12 0

-0.3 - 1 10 11 3.9 13 1

0.P 0 13 14 4.2 14 0

"7F 0.3 1 13 13 4.5 15 0

0.6 2 12 13 4.8 16 2

0.9 3 10 10 5.1 17 0
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casFIT.

-3 -27 81 -.0 6 .09158

-1 -2 -22 44 -. 68 .02478 -0.33

-. 3 i1 -1 -11 11 -. 40 .00312 -0.04

0. 14 0 0 0 -.12 .00003 0.

.3 13 1 13 13 .16 .00008 0.

.6 13 2 26 52 .44 .00454 -0.06

.9 10 3 30 90 .72 .03087 -0.41

81 9 292 -2.05

181281
AO . 1...82J1 .1 . 13.14286

588

A1  - 9/28 - 0.32143

i:: A 2 8"2 291 . -0.39286

588

x *0.40909

fe) - 13.20860

ox "4.10012

0 0.12273

c - 1.23003

N - 136

To compute df, us*

1 . -0.28

/o. 0 0.12
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CORUgIED CURVE FIT *PROBL 3L

f +r&

-. 9 9 7.79 -3 -23.37 70.11

-. 6 11 10.67 -2 -21.34 42.68

-. 3 11 10.96 -1 -10.96 10.96

0. 14 14. 0 0. 0.

.3 13 13. 1 13. 13.

.6 13 12.94 2 25.88 51.76

.9 10 9.59 3 28.77 86.31

i~9511.98 274.82

178.95 281
BO 1274.82 196 13.23000

588

B - 11,98/28 - 0,42786
!• 17 78.95 . i

B w 128 274.821 -- 0.48786
588

x • o0.43851

I f() - z)13.32381

-3.69533

u 0.13155

my - 1.10860

N a 123

Check:

1 *0.2'11
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Is the result affected by varying the span of data used? Let ua

rework Problem 3, using all the data up to ly - 1.8. Even though

the estimates of r and p4 ave poor, iteration of the method quickly

puts data for lyj> 1.2 outside the range of the correction table, and

so drops them from the calculations. The remaining 9 points, when

properly corrected, should virtually duplicate the results earlier obtained

from fitting a curve to 7 points. The results compare as follows:

9-point fit: p - 0.162, * - 1.096, N - 123

7-point fit: u• - 0.132, o - 1.109 N - 123

. .. ..

MI.
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13-POINT CURVE PIT. PROBLE- 3

Y f x xf xt Factor A

-1.8 3 -6 -18 108 -1.36 .32141 -4.03
-1.5 5 -5 -25 125 -1.14 s17195 -. 1.6

-1.2 6 -4 -24 96 -. 92 .07815 -0.98

-0.9 9 -3 -27 81 -. 70 .02770 -0.35
-0.6 11 -2 -22 44 -. 48 .00639 -0.08
-0.3 11 -1 -11 11 -. 26 .00056 -0.01

0 14 0 0 0 -. 04 .00000 0
0.3 13 1 13 13 .18 .00013 0
0.6 13 2 26 52 ,40 .00312 -0.04
0.9 10 3 30 90 .62 .01734 -0.22

* 1.2 9 4 36 144 .84 .0S552 -0.70
S1.5 4 5 20 100 1.06 .13198 -1.66
I 1.8 4 6 24 144 1.28 .25998 -3.26

112 1008 -13.49
112 1821 a 12.53147

A " 1000 4550 1 - 0.211, Use 0.2226026

A1 - 22/182 - 0.12088 0.22 i - 0.048, Use 0.04

113 1121 - 0.06482
A2 a 1821 0081 -- 0.27972

26026 W w 1.42060

- 0.21607 N w 149

•' •: f(G ) * 12.54453'I 1

irx 4.73533* o

. _79
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TABLU 18

1I3-PONT CURV• 71F1 CONTINUED, PR0,LEM 3

x f+ f xtt factor AO x f+AO• 0 x r

-6 -1.03 6.18 -37.08 -1.62 -6

5J- 2.84 -14.20 71. -1.36 .32141 -4.15 -5 0.85 -4.25 21.25
-4 5.02 -20.08 80.32 -1.10 .15108 -1.95 -4 4.05 -16.20 64.80

-3 8.65 -25.95 77.85 -. 84 .05552 -0.72 -3 8.28 -24.84 74.52

-2 10.92 -21.84 43.68 -. 58 .01338 -0.17 -2 10.83 -21.66 43.32

.-1 10.99 -10.99 10.99 -. 32 .00129 -0.02 -1 10.98 -10.98 10.98

0 14. 0. 0. -. 06 .00000 0 0 14. 0. 0.

1 13. 13, 13. .20 .00020 0 1 13. 13. 13.

2 12.96 25.92 51.84 .46 .00540 -0.07 2 12.93 25.86 51.72

3 9.78 29.34 88.02 .72 .03087 -0.40 3 9.60 28.80 86.40

4 8.30 33.20 132.80 .98 .09886 -1.28 4 7.72 30.88 123.52

5 2.34 11.70 58.50 1.24 .23237 -3.00 5 1.00 5. 25.

6 0.74 4.44 26.64 1.50 6

98.51 30.72 617.56 -11.76 93.24 25.61 514.51 -
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98.52 182
i Bo -• 0 12.90343

B0~~~ - 2uJ.Z5o6,u'+ 26026

B 1 - 30.72/182 - 0.16879

1 3 98.511
B2 0 A~~i 2.61,6 -0.3804095

26026

•'- 0.221$5

Sr') ,.12,°92215

•',- 4.12123

y " 0.06656

1.23637

N 133

0.243, Use 0.26

0.26 p 0.058, Usem 0.06

93.24 110
CO - 151 1958 - 13.34688

9438

C1  - 25'.611110 - 0.23282

11 93.24 -

2 - 110 3514.51 -0.48705
4 - 1

x * 0.23901.

f CI) 13.37470

d-x - 3.70544

4, ,y - 0.07170

N a 124

' 1 * 0.270, Use 0.28

A", .28 3" 0.067, Use 0.06

..m • • .... 
. . . . .. 
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TABLE 19

9 POINT CURVE FIT PROBL,•,3

x Factor AF 9
faF x x a g Factor AgOx

-4 -1.18 .19468 -2.60 3.40 -13.60 54.40 -1.26 .24592 -3.29

-3 -0.90 .07198 -0.96 8.04 -24.12 72.36 -.. 98 .09886 -1.32

-2 -0.62 .01734 -0.23 10.77 -21.54 43.08 - .70 .02770 -0.37

-1 -0.34 .00164 -0.02 10.98 -10.98 10.98 - .42 .00378 -0.05

0 -0,06 .00000 0. 14. 0. 0. - .14 .00005 0.

1 0.22 .00029 0. 13. 13. 13. .14 .00005 0.

2 0.50 .00750 -0.10 12,90 25.80 51.60 .42 .00378 -0.05

3 0.78 .04191 -0.56 9.44 28.32 84,96 .70 .02770 -0.37

4 1.06 .13198 -1.77 7.23 28.92 115.68 .98 .09886 -1.32

5 1.34 Not Used

S-6.24 89.76 25.80 446.06 -6.77

89.76 60
- 1446.06 708 13.27074

u 2772

*D 25.80/60 a 0.43000

9 89.76 -
1690 446.06 1 -0.49461

x 0.43469 ay a 1.10267

f(Cx) a 13.36419 N a 123

Sax" 3.67557 0.272, Use 0.28

S• 0.13041 .28 ; = 0.122, Use 0.14

'1 82
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TABLE 20

9 POINT CURVE PIT, CONTINUED, PROBLEM 3

xG xG x G

-4 2.71 -10.84 43.36

-3 7.68 -23.04 69.12

-2 10.63 -21.26 42,52

-1 10.95 -10.95 10.95

0 14. 0 0

1 13. 13, 13.

2 12.95 25.90 51.80

3 9.63 28.89 86.67

4 7.68 30.72 122.88

89.23 32.42 440.30

89.23 601
E.' 270• -13.26004

H - 32.42/60 . 0.54033

9 89.236,0 ... 440.301
E2 m 1 70 " -0.50184

a 0.53835 Check:

fCx) - 13.40549 1 * 0.274

x 3.65463 .274 • - 0.148

. 0.16151

c r 1.09639

N =123
I
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THE 1979 SAMUEL S. WILKS MEMORIAL MEDAL

Frank S. Grubbs

The Samuel S. Wilks Memorial Medal Award was initiated in

1964 by the US Army and the American Statistical Association#

and has been administered for the Army by the American Statistical

Association, a non-profit, educational and scientific society

founded 140 years ago in 11839. The Wilks Medal and Award is

given each year to a statistician - and a top-notch onel - and

is based primarily on his contributions to the advancement of

scientific or technical knowledge in Army statistics, ingenious

application of such knowledge, or successful activity in the

fostering of cooperative scientific matters which coincidentally

benefit the Army, the Department of Defense, the US Government,

and our country generally. The Award consists of a medal, with

a profile of Professor Wilks and the name of the Award on one

side, the seal of the American Statistical Association and the

name of the recipient on the reverse side, and a citation anid

honorarium related to thn magnitude of the Award funds, which

were generously donated by Phillip G. Rust of the Winnstead

Plantation, Thomasville, Georgia. Mr. Rust originally stimulated

the interest of Sam Wilks in distributional properties of the

"extreme spread" (bivariate range), a measure of the "accuracy"

of rifle shot on a target.

These annual Army Design of Experiments Conference, at which

the Wilks Medal is awarded each year, are sponsored by the Army

Mathematics Steering Committee on behalf of the Office of the

Chief of Research, Development and Acquisition, Department of the

Army.

•.. ....... .•
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Previous recipients of the Samuel S. Wilks Memorial Medal

include John W. Tukey of Princeton University (1965), Major

General Leslie E. Simon (retired, 1966), William G. Cochran of

Harvard University (1967), Jerzy Neyn~an of the universi-y of

California, Berkeley (1968), Jack Youden (deceased) formerly

of the National Bureau of Standards (1969), George W. Snedecor

(deceased) formerly of Iowa State University (1970), Harold

Dodge (deceased) formerly of the Bell Telephone Laboratories

(1971), George E. P. Box of the University of Wisconsin (1972),

H. 0. Hartley (1973), this year's President of the American

Statistical Association, Cuthbert Daniel, private statistical

consultant (1974), Herbert Solomon of Stanford University (1975),

Solomon Kullback of George Washington University (1976), Churchill

Eisehar of he ational Bureau of Standards (1977), and William

Kruskal of the University of Chicago (1978).

Tup to this year, for which the competition

for the Wilk's Medal turned out to be keen indeed, and as usual

the "best man won". The members of the 1979 Wilk's Memorial Medal

Committee consisted of individuals skilled in the art. of arguing
['F

their points and getting their beat views in the minds of otherst

They were: Chruchill Eisenhart, Fred Frishman, Frank Grubbs

(Chairman), Bill Kruskal, Jeff Kurkjian, and Frank Prosohan.

They had the job of concentrating on some 12 deserving candidates

from many nominees, and coming up with their best selection ac-

cording to the Wilk's Medal criteria.
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The 1979 Wilks Medalist, like Sam Wilks, was born in Texas.

He received his B. A. in Physics (with highest honours) in 1934

from the University of Texas, and later his Ph. D. in Mathematics

from Princeton University in 1940, in the first cohort of Wilks

disciples. Between 1934 and 1940 he taught as a graduate assistant

or instructor at Brown University, the University of Texas, and

Peinceton University, while also during that period he made the

transition from Physics through Applied Mathematics to the great

field of Mathematical Statistics. After obtaining his Ph. D. in

1940, he returned to the University of Texas as Instructor in Ap-

plied Mathematics and Astronomy, interrupting his academic career

to join the Bureau of Labor Statistics in 1942, and in 19.44 a

project of the Applied Mathematics Panel of the National Defence

Research Council (I believe under Sam Wilke). Then from 1945 un-

til 1948 he was Professor of Mathematics and Statistics at Iowa

State University, and then Jo-ined the RAND Corporation, where he

served as Deputy Chief of the Mathematics Division until 1955.

At this point in time the entrepreneur emerged and the 1979

Wilke Medalist founded the General Analysis Corporation, served

as its President until 1960, when it merged with CEIR, INc. He

then became a Vice-President of CEIR and Manager of its Western

Division until 1964, when he next went to Washington as Assistant

Commissioner of Educational StatisticP in the Office of Education.

He was then"Director of the National Center of Educational Sta-

tistics until 1967, after which he returned to the West Coast

an Professor of Administration and Director of the Public Policy

Research Organization at the University of California, Irvine.
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There is much, much to say about this scholar and gentleman

concerning his great contributions to the field of statistics

generally, although they should be recorded elsewhere. We should

note, however, that he wrote the best key graduate book for a

solid ctatictlc& course, and one which han trained many good

statisticians. (Introduction to the Theory of Statistics). He

has been a prolific publisher of technical papers on statistics,

operations research, education and public policy research. He

has been Presidents of both the institute of Mathematical Sta-

tistics and the Operations Research Society of America.

A long-term friend and colleague, George W. Brown, told me

that the 1979 Wilks Medalist is an "extraordinarily and decept-

ively quiet man", so that I don't think he would win an award

as the "most talkative statistician"'I Yet, he has exerted

major direct and indirect influences on an enormous number of

incuividuals. And he has had many separate careers actually,

including roles as a professor, a think-tank researcher, an

operations research analyst, an administrator, an entrepreneur
and manager, a pioneering public servant, founding director of

an important research organization, and distinguished consultant

and advosor to universities and government organizations.

By now it should be unmistakebly clear that we are referring

to none other than Alexander M. Mood.

The citation for Alex Mood reads:
"To Alexander M. Mood for his many significant contributions

to the theory of statistics, an outstanding textbook on the sub-
ject, his extensive applications to operations research and sys-
tems analysis, and unique statistical assessments of education
and public policy research."
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Variance Reduction in Monte Carlo Simlation*f

Mark Brown
lorida. State University

Hurbort Solomon
Stanford University
Michael A. Stephsus

Simon Framer University,B. C.

1. Introduction.

Monte Carlo simulation is employed in a large variety of problems. Fre

quentlyp one is interested in the expectation of a function 9(XO•...,)

where < X ±, > 1 > is i.i.d. with known distribution P and N is a

stopping time (often e constant). The procedure followed is to generate

a large number of samples (X(l)090*0x(1))p I )l2p•. a., and estimate
1 N I

the expectation of interest by

1 M (())

An interesting aspect of the simulation estimation problem is that

F is known. Thus functions of the form A (P, X... ,XX) can be employed

as estimators, Ahile in statistical estimation problem with F urnknown

A cannot be computed from the data and i. thus not considered to be an

estimator. Thus the class of estimators is considerably wider In Monte

Carlo problems.

One approach available to reduce the variance of the Monte Carlo

estimator is to find a function (FPXi ... XN) with the same expectation

as g, and with smealler variance. Then I rather than g is averaepd

over the M samples. Of course, A PIS flits this description but were

Partially supported under U.S. Army Research Office Grant DAAG-29-77-G-0031
and issued as Technical Report No. 35.
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It d1irectly co•u•utable one would not need to simulate in the first place.

Thus an iportant requirement of A is that it be simply computable.

We ll4utrate the above remarks by consldeArig the problem of Monte

Carlo estimation of 1(t) - u(t), the expected number of renewals in

[08t] for a renewal process with known interarival time distribution F.

S Beveral unbiased estimi s *eh compete fawrably with the naive estimiator,
! X~~((t)# are presented A s lwtded. 'i

Weo beli:eove that apprach and methodoloWalthog oras applied o

renewal •unction estimtion In thit poper, can be useful In a laoOg

variety of Monte Carlo simulation problemos

1.. Assume that < X, 1>.> i > i.s i..d. withaf P Where F(o) O.a
Define S a 0, 0 X, n .n ,2..,,N(t) - max(ne s < ), and

0n

M(t) - EN(t), t > 0. Sometimes we consider the point t - 0 s a renewl

epoch. In this cas we use NO0W) N(t)+÷ ,nd NOW( 1 . M(t)+.. The

renewal qae at time t i.s defined by A(t) - t-8N(t)5 Pr'(A(t,)= t) - F(t)

and Ar(t) Y(x)dM (t-x) for 0 <~ x < tp thus Aý'(ct)) Y(x)dO(t-x)
• A(t)

for 0 < x < t.

* Define

Then 11(t) 5 and M(t)m3zEO 85 -Q F( F (t), where F~l) is the t

convolution of F.

'1 90 .........
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To estimate F (b) Eb we will use

( " Xj.3.) " z(bi ') "t-6(41 '1 )

j. \ We then estimate M(t) bys

Since Var(?(t-S i 1 )) Va V~ i-3.) < Var b's wea have replaced,

each component) 5,0 by a component with the same expectation and

smaller variance. Intuitively we would dxpect that if we reduce the

variability at each stage (f:iven the past) then we should reduce the

variability of the overall estiutoro However, the computation of

variance involves oovariance terms, and if theme are increased while

variances are denreased there can conceivably be an incasu in variance.

Theorem 1 (below) demon•trates that 14(t) dove indeed have lover variance

than M (t).

Theorem 1. Yt) is an unbiased estimator of: M(t) and Var N(t) - VarM (t)W

3(214(A(t)) - 1(A(t))] Op0 with strict *quality If 7(t) > 0.

Before proving theorem 1 we comment that the reduction in variance

a is unsatisfactorily small for large t. "f 2 - EX2 < w then

1[2M(A(-b)) - F(A(t))) 0(1), thus Var 14(t) and Var MW(t are of the

1 form 7t + 0(1) with common v, and we improv,. only the asymptotically

negligible 0(1) term. Estimators considered in later sections do

considerably better for large t.

.1
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Proof of Thieorem 1. lxpreuu 11,N) as

1(t) f 7(t-x)dN() s If (t-x)dN0 (x)

Then

D7t f (t -z)%(z W f 1%o(30 of F(tma)Gv%()

nip t) - fo 0't~Mz

(1) f P 2 o(tx)() - f t 1(t-x) l(t) -1 M(t-)Ft2)()

- 14~(t)- zr(A,(x))

+ 92
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-2t4(t)

(vi) 2 f (u)(~)%()I~a.. u

Ccubizaing (1 )-(vi) we obbaidn

(2) M24t) + 21S2)(t)- ((Ab)-(A))

(3) ~ lo 121")-~(f W(0)2.. M(t) + 2 Jf dm(r)!m(a-r)

a 1(t) + 2()t

V Thus r'rom (2) and (3):

Var N(t) UVr' i4-,(t) E(214(A(t)) - IP(A(t))]

since

14(s) -214(s) -F(S) -F(s) + 2 o ()~)>
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thusu•Z2M(A(t))-F(A(t))I >(0 for P'1 t and s oriotly po•itive

for F(t) > 0.

, Zn this secion we uasae that F is continuous. The cumulative

hazard H is defined 'b H(t), a=log NO,•. Wlien F in~ absolutely •i

continuous with density f then H(t) a 16t h(y)dy *hero h is the

hozard function, hi(t) - te.t

Our next estimator is based on the intuitive idea thatb

31(dZ4(s)I~s~t) - dM(A(v)). Thum instead of usings NW( - Jt dX() we I

try

W~t J dlC(A(m)) TI( 1 H(A(t))I'

whre HC s(.-:t) t, x0. (where & A b - ,.in(ab)).

N4ote that N(t) 8 while %~(t) - 'E H i.Tus 8j. is replaced

by Hi., and, V(5 IS±...) .i(uIS,.3.) .. F(t.8 )

The process MH(t) is a owrulastve process in the sense of •mith

[3]. Thus (Smith (3])

Var M1 ('t) -' [H(X) - (UX)X] 2

where t u EX. But H(X) = -log V(X) is exponentially distl•ibuted with

parameter 1, thuss

EtH(X) - - xl . • + - ,
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where P in the oorrelation coefficient between X an ii(X) and 2

is the variance of X. Thus MH(t) is asymptotically better than N(t)

A +for p > 4i/2q; eay"totically iore thoa, N(t) for P < ./2a.

In general if we have two unbiased estimators of a parmeter) T1

and T2 , with covarianoe matrix A, then the minimum variance unbiued

1 '!:•estimator of the form aTI + (l-a)T2  is the one with
IT2

C1-1

' JE

The variance of this estimator is

i'l

The idea now is to let A be the asymptotic covarianoe matrix of

(N ~t

ii,, to employ the above result to obtain an unbiased estimator which

i.mproves on both M,(t) and N(t) for large t. We already know the

0(t) terms for Var N(t) and Var MH(t). We only need the leading

term for Cov(N(t), MH(t)). This is given in lema 1 below.

Lemma 1. If 2 is finite then

Cov(1(t), MH(t)) + ) 0(t.
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Proof.

var(Nt) - NK,(t)) - var (a (-H(t-8 1 4i A Xi))

E vlarC8. -H(t-B811  A Xj)lB 1 ]-l U (t-811  EXu - 14()W

Ths (t) .Vaz'(N(t) -t~t)-Var N(t) + VmsrQ4H(t)) -200V(N(t),pN(t)) p

and therefore

Cov(N(t),KHX(t)) ( var N(t) +va~r N,~(t) - (t)]

t c +'T + I+ o (1))

2

an& 96



1 2 2

Aij

Note that the asymptotic relative savings in variance is p- the

square of the correlation coefficient between X and H(X). Summarizsing:

Theorem 2. The estimtor

Jis (t) (1 - R)N (t) +V t
4

is an unbiased for M(t) with variance

3 .(1-P2 ) + o(t)

(P in the correlation coefficient between X and H(X)). It follows

that:

Va N(t)- Var M (t) 2

Exampe: Let H(x) - x , F(x) - e". Then)

f f w 2 -2
e, = x e dx -x•. dx ;

02

EX2 2 f xex2 dx= 1

thus

2 it 1 1 -x 2 _ _

a. -y -s- P [ f2x e dx-] = P- ~=-.1

fl.................

.c 4( .n .'915 ,o•
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Thus in this came (Weibull with shape parmeter 2) the unbiased estimtor

M (t) has an asymptotic relative reduction in risk over N(t) of
91.5 percent. I

integrat9on by parts shows that ,

z ®x(x)F(x)dx
nI.

since H(x) -log F'(x) the integral can prmbably be given an enthroW

interpretation. Also p - - f(x) Mhere Hf(x) f (z)dz. This in

true since

JH(3C)F(x)dx f H(3C)EIT> Ex z H(x)IX >Xdx I ~~xIi()

Note that both P and a ai invariant under a change of time scale,

t -ct, c >0.

. In section 3 we estimated M(t) by a weighted average of N(t) - i
N(t)+1

and Mp(t) T t H((t-s 1.1 ) A xt). Now we apply the same idea but

stagewise. At. stage I, having observed XI,...,X1 1 , 14(t) adds the

component = 1I <_ t-s.) while M(t) adds Hi - H((t-Si,-) A Xi).

Each of 51) Hi are conditionally (given Sia.) unbiased for F(t-SiI)

and unconditionally unbiased for 7 (i) (t). The approach we now follow Is

to use the weighted average of 8 and Hi which has smallest conditional

variance given Xl,..,x 1i, 1 0

98•!;•:•
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Define i -F(t-.8 1 ) C- H(t-Si. 1 ). Then:

-" -
ii

CoV(b 1,H 1 1S.1 1) - i(Pi-Ci)

Vaz'(H, 1,1S1 ) - 7+I71(F1-2C1)

lbe minimum conditional varianme (given X1 ,... ,Xl 1 ) unbiased linear

combination is then:

C. ±

The corresponding entimator of M(t) is:

ML(t) =N(t) - 1 N-11  B-HI)

We do not know how ML(t) compares with the other estimators we

have looked at. The varianoe of an estimator of the form E K1  is

E Var K, + 2 F Cov(K1,Kj); Li was chosen from among a class or

estimators E K1  to minimize E Var I. However we know very little

about Cov(Lj ). This latter quantity must be shown to be suitably

small in order to demonstrate that ML(t) has desirable variance

properties.
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.. We next consider an unbiasue estimator with saymptotlo va••ance

0(1). Thus it wyuptoti•aiLy enjoys a 100 percent reduction in

vari•ace over x(t).

As i well knovn N(t)+1 is a stopping time and thus by Wald's

A 1 01N(t)+l

is W•.b.Lfeld for M(t). Now Var(S,(t)+.) - var'(t+Z(t)) - Var z(t),

vhere Z(t) In the forward recurrence time at t. If 11 "F <

then Var Z(t) converges to

2 2
- IA2 141 -3ý

as t 0 . Thus

liar 14(t) *-P 2-

and is thus 0(l).

100

S~~~~~~~~................. __.,-,,,,,,,..,,-" ........ : /_.
- - ]IJJJ•[



References

El] Brown, M. and Ross, S.N. (1972). "Asymptotic properties of

cumulative proceues".' Siam Journal of wpled Mathematicxu
22 9-105.

[2) Feller, W. (1970). An Introduction to Probability 7heory and

It. Applicationu- Vol. II, Second Edition# John Wileyp N.Y.

(3[] Swth, W.L. (1955). "Regenerative stochastic processes".

Proo. &oy. Soc. A, 2 6-,31.

a' )

101

-V, ,O.... .



/ 0 z2JId&

SMALL SAMPLE SIZE EFFECTS ON

TOLERANCE LIMITS, EXCEEDANCES

JAMES R. KNAUB, JR.
ARMY MATERIEL TEST AND EVALUATION DIPXCTORATE

US ARMY WHITE SANDS MISSILE RANGE
WHITE SANDS MISSILE RANGE, NEW MEXICO

ABSTRACT - Tolerance Limits, exceedances and includances,

are useful indications of the adequacy of a sample size.

However, for very small sample sizes, such results become very

sensitive and may require a thorough analysis before con-

cluding whether sample sizes are adequate. Some measures of

sensitivity are investigated in this paper.

1. Introduction - When dealing with missile systems or any

other materiel which consists of a relatively small number

of very expensive items which will not survive a test, one

would not like to destroy any more materiel than necessary,

so sample sizes are made small. Time may also be a factor

in keeping sample sizes small. When testing to specified

test objectives, however, small sample sizes cause large un-

certainties in the results obtained. In hypothesis testing,

for example, a small sample size means that the power of the

test is low, and therefore one's ability to discriminate be-

tween an untrue null hypothesis and a true alternative hypo-

thesis may be low even when the two hypotheses are very dif-

ferent. Although the power of a test is very important in
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missile work, as it shows the sensitivity of results to small

sample sizes, it is often ignored. An example is the use of

Wilcoxon'.s Rank Sum Test which is often used with no power

calculated, even though it is easily obtainable from a paper

written by E. L. Lehmann in 1953 (Lehmann, "The Power of Rank

Tests," Annals of Mathematical Statisticl, 24 (1953), 23-43).

Any measure of sensitivity which provides the likelihood

of confusing one result for another would be analogous, to a

degree, to power. The central question is, "Is the sample

size sufficient to reduce to an aceeptable level, the risk

of saying that more is known than actually is known?"

From Gumbel, Statistics of Extremes, pages 97 and 103-104

(see also Hoel, Introduction to Mathematical Statistics, pages

274-277), the following equation is produced (due to B.S. Wilks)a
n-i n

P V, 1-ny + (n-l)y

where P m Ptat least 100y% of the population is between the

smallest and largest observation of the sample of size n].

* A first approximation (which appears to be low for small sample *

sizes) is given as

The previous equation can be solved iteratively from here

using small increments.

This is useful information. However, for very small

sample sizes, perhaps a measure of sensitivity as described

104h
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earlier may be desired. To make one further analogy, when

sample sizes are very large, point estimates may be suffi-.

cient, however, when sample sizes are small, lower confidence

limits are needed in order to avoid misleading decision

makers. What is to follow is based upon the theory of exceed-

antes. (See Bradley, Distribution-ftee Statistical Tests,

t* pages 216-218.)

2. A Measure of Sensitivity - Consider an initial smmple X,

made up of n observations, ranked from r equal 1 to n, from

which one wishes to make predictions about the next m obser-

vaticona in a sample, Y. If b represents the nmber of observations In Y

Which have values lower than the rth loweet..value in X, then (from~ Bradley,
pages 216-218),

P[oxactly b of the Y's will be 4Xr]
r. (r-l+bf (n+m:r-b)

!ii .II n r

.i•:: bl b_ .Letting p lir -6-and po li rn M- where po<p1 one can in-

vestigate the case of n, a finite sample size, but n+m, the

infinite population size. Now let 0 be used to represent a

measure of sensitivity for tolerance limits, in some ways

analogous to, but not the same as, the probability of a type

II error. Here,

0B w" ([100plt or more Y's 4 Xr]

:P[l00op or fowor V's "Xr].

B, here, is not a probability, but a ratio of probabilities.
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It shows the relative probability of having an unacceptable

(o00p 1 %) percent of the population values for a certain para-

meter (e.g., missile lethality), or more, fall below the rth

lowest value in 'the X sample, as compared to a hoped for 100pl %

or fewer members of the population falling in that category.

Therefore, the smaller B, the more sensitive the results are

to implying more is known than can be known from a certain

sample size. (i.e., the smaller 0, the better.)

The following briefly sketches the derivation of s:

m

0 lim 141 -1

r-l+i, n+m-r-i)E ( r-1 H" n- r
i-o

E [ (r-l+J) (r-2+ji ... (J41) (n+m-r-J) (n+Av-r-J-l)... (MrJ+l)]W lim jwb~l_..

S?[(r-l+i) (r-2+i] ... (i+l) (n+m-.r-i) (n~m-r-i-l) ... (m-i+l)]
i-o

For m large, b1 *plm and boApom, so sum in the numerator from
(RM)r'l[r1(l-)]nr to mn'l(n-r)!, and in the denominator from

n-jr, r"-1El (_o 3nx

(r-l).mn rto (poT)r[m(1-PoJfnZ. Since there are an infin-

ite number of terms, these summations become integrals. For

r-l, n-5, the numerator becomes lim ($ (4+n-J) (3+m-j)(2+m-j) (l+m-j)dJ,
m plm

which makes the integral approac1i*m For r-2, n-5, the
f(rn-j) 4dj'

m Pi m m j3
integral is f(j+l)(3+m-j)(2+m-j)(l+m-j)dJ 4 fj(m-J) dJ.

p m Pl m
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In general then, the integrals will be of the form

11r-I (M-J)n-rdj.

The only difference between numerator and denominator are the

limits of the integration.

For ral, n*5, one has

S= l-p 1 +2(p 1
2 -1)+2(1-pl )+p 1

4 -l(l 5-P1 5

po P p o +2p o - P

As an example, letting pl'0.3 and po-0 .2, 0(r-l, n-5, po-0.2,

P1 -0.3)u0.42. This means that the probability that 30% or

more of the population will have values below the lowest in

the sample of size 5 is 420 of the probability that 20% or

less of the population will be that low. If one does not wish

to tolerate having more than 20% of the population that low,

then there is cause for a great deal of alarm, especially if

30% is an unreasonable alternative.

One can determine the exact probability of having lO0a%

or more of the population fall below the rth value of the

sample, and also the exact probability of having 100a% or

less of the population fall there. Call the first prob-

ability x and the second y. Then, one has

Y+y - 1, and

'I:B (po=Pl =100a%) " x

"Therefore, for such a 0, x and y,

+ and y -
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As an example, B(rul, n-5, po0 m.2, Pin0.2) a 0.55,

P[20; or more of the Y's 4 Xl] u 0.36, and P[20% or less of

the Y's 4. Xi] 0.64.

For r-2, n=5, one has

0 (l-P, ),.+ p 1
3 -+ T (l-p 1

4  + p-)
1 34 1 5
Po Po To - V

As an example, for pc-0.4 tested against the alternative that

P1 .0.5, B - 0.28.

As can be seen from the above, one may calculate, a priori,

what ranges of values of n and r may be used in order to have

an adequate degree of faith in the accuracy of results. A

major advantage in this approach is that one may use r)l.

Often one can not obtain an adequate sample site without a

large probability that at least one of the observations will

be lower than a value toward which one would like to test.

3. A More Subjective Approach to Sensitivity. When planning

sample sizes for a test, there is an additional approach which

may be helpful. Consider Danzigar and Davis, "Tables of Dia-

tribution-Free Tolerance Limits," Nnnals of Mathematical Sta-

tistics, 35 (1964), 1361-1365. From Danziger and Davis,

"The probability that N of the Yi's lie above X in given by,

P(N N N +n-, )- .. r
0 11 (N1JIl)Nn 0

Here, i denotes a ranking of the Y sample, N is what ha3 been

labelled m, and No is the nunber of Yi'a above X , where b
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has been-used earlier to represent the number of them below

it.

F,•om the table by Danziger and Davis, with probability at

* least 0.75, at least 0.752 of a population will lie above the

second lowest vqlue in a sample of ten, With probability at

least 0.75, however, the proportion of the population above

the third lowest in a sample of ten is only at least 0.644.

Therefore, if X2-X3 is very small, then a sample of size ten

is not adequate in that it can not distinguish very well be-

tween 0.752 and 0.644 as lower probability bounds to the pro-

portion of the population values above such a point. Examin-

ing the table by Danziger and Davis shows that, in the cases

shown, this form of sensitivity, as are most forms of sensi-

tivity, is extremely sample size dependent.

As a practical example of how this approach could be used,

consider the case of determining whether targets are detected

by a certain range. Imagine that the same number of targets

are detected before a critical range in each of two tests

using equal sample sizes. In one case, say all (or many) of

the detections before the critical range were just barely

before it, but in the other case, they were very early. Thus,

a slir3ht change in critical range would cause a large change

in the proportion of the former population valu'es believed to

be above this point, but no change in the latter came. (This
situation is expected when dealing with rank procedures.)
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4. Conclusion - When analyzing data, one must be particularly

careful in dealing with small sample sizes. It in highly

desirable to obtain every bit of information possible from

such samples, but it is equally desirable to avoid claiming

more knowledge of the population than the sample can actually

provide. Balancing cost considerations against information

obtainable can only be accomplished by careful consideration

of all aspects. Tolerance limits and exceedances have a role

in such considerations.

J
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THE PERIODIC NATURE OF EXPERIMENTALLY MEASURED DATA

Michael Hacskaylo
US Army ,lectronics Research and Development Command

Night Vision and Electro-Optics Laboratory
Infrared Technology Division

Fort Delvoir, Virginia 22060

ABSTRACT. There Is a phenomenon that appears to exist in the portrayal
of measured data for nearly all types of experiments. It is observed that
when experimental data points are plotted as a function of a variable, the
data points are portrayed periodically rather than randomly about the theo-
retical curve. This is in contrast to an expected random distribution of
the measured data. Although not always well defined, two distinct periodic
characteristics can be pointed out: The first is a sinusoidal characteristic
that appears to be cyclic in 10-12 measured events, and the second is the
"cusp" characteristic that appears to be cyclic in about every three to

I four measurements. A method, which is based on a heuristic equation that
relates a "periodic" probability of the arithmetic deviation with the associated
measurement, generateedata points whichare in agreement with some published
experimental values.

I. INTRODUCTION. There is a phenomenon that appears to exist in the
portrayLlof measured data for nearly all types of.experiments. The phenomenon
is that when experimental data points are plotted as a function ofa variable,
the points are manifested in a periodic fashion about some smoothly drawn curve.
The periodic appearance of the data points is in contrast to an expected random
distribution of the measured data. The periodicity, althoughnot always well
defihed, can be seen upon examination of such plots in various technical
journals. Two distinct periodic characteristics canbe pointed out. The first
is a sinusoidal characteristic that appears to be cyclic in 10-12 measured
events (1, 2, 3, 4). The second is the "cusp" characteristic (5) thalt appears
to be cyclic in about every three measurements, (6, 7, 8, 9) wheroas other
curves appear to be a combination of both characteristics (10). The cited
references are specific examples selected from the literature that clearly
exhibit the periodicity. However, most other figures show data points.
that exhibit the periodic deviations of the data points leas clearly, but nearly
all of the experimental plotted data points show the phenomenon regardless
of the physical parameters that were measured. This phenomemon is based on
observation devoid of a priori concepts of the randomness of events and asso-
ciated measurements. It is thus concluded that there is a non-random re-
lationship between the experimentally measured data and the sequence of meas-
uring events. In order to develop a mathematical treatment for the periodio-
dicity of experimentally measured data, the following postulated is made:
If for a well-ordered experiment, the experimentally measured data are taken in
an identical manner at equal increments of the independent parametsr.L
the data points will be periodic as a function of the (measuring events about

the average curve. Thus, the experimentally measured data can be determined
from the probability of the associated measuring event; in conjunction with
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the equation i r the experiment, it is, in principle, possible to predict
the experimental data points as a furEction of measurements.

The purpose of this paper is to present a heuristic method that generates

a periodic form for data points which are in general agreement with published
experimental values. Three examples in which the "periodic" data points
exhibit close agreement with published experimental data points will be
shown.

II. DEVELOrHENT. The deviation of a datum point from theoretical
curve (considered to be the mes-,) is, by definition, the arithmetic deviation.
The arithmetic deviation of a measured value of a physical property of
an experiment is dependent upon the experimental procedures, and if enough
measurements are made, the distribution of the arithmetic Oeviations will
follow the Gaussian curve. From the Gaussian distribution c~rve, it can

be readily seen that the arithmetic deviation is proportional tp dothe standard
deviation. This proportionality faetor is the o variable in' the Gaussian
distribution equation and thus isi a key parameter for the comprehension of
this paper. The proportionality fq.ctor, derived aa a function of the
probabilily of the Gaussian distrib. ion equation, will also be derived
from a heuristically developed periodic "pseudo-Gaussian" distribution for
the generation of periodic distribution of the data points.

The Gaussian distribution equation is

Pm - l/(°c i)exp['(mM) 2 /2a 2 ] (1)

where pm is the probability of the measured value, m is the measured value,
H is the mean and o is the standard deviation.

Let M M M- - (2)

wihers kO is the arithmetic deviation and k, the multiplier of o, is defined
an the arithmetic deviation coefficient. By substtution,

Pm = l/(o/rw)exp(-k 2 /2). (3)

Now Pm is normalized so that the area under the curve is unity and thus
Pm " 0.399/0 when m - M, the peak of the Gaussian. However, by lejting
Pc - Pm(a/rit'), a comparative probability is obtained such that rc 1 when
k- 0, i.e., m -?4.

Now Pe m exp(-k 2 /2) (4)

and k + .2 ln Pc " (5)

Eq. (5) can be rewritten as

k =-42 1(6)
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where I - -ln P_ and is a form of the self-information equation (11) of the
measurement which in associated with the arithmetic deviation coeffictent.
Thus, if the comparative probability associated with a measurement can
be determined, the arithmetic deviation coefficient, k, of that measurement
can be calculated from Eq. (5). Sinceo is a constant, k is proportional co
the aritjvetic deviation.

Since the portrayal of the experimentally measured data indicates that
the measured values are a periodic function of the measurement and since the
comparative equation developed from the Gaussian equation is not periodic, a
heuristic periodic expression which closely matches the Gaussian distribution
(to about k 2.5a) was developed for the probability of the measured value as
a function of measurement.

The empirical equation is

PN 0 cs8eON (7)

where PN is the probability associated with measurement N,
N - 1,2,3, ... and

N - 30 Kt; + 8/1'K (

where -- < KN<+- and is dependent upon N. This dependence will be discussed
later.

Comparisons of the probability values of Eqns. (4) and (7) are shown in
Fig. 1 for KN and k in the range -3.00 k =KN•i+ 3 .00. The comparison shows
Eq. (7) is an approximation to the Gaussian to about ± 1,75a and a reasonable
approximation from * 1.750 to about J 2.50. When P .0, KN - * 2.5723...,
and for the comparable value of ± 2.57230 nearly 991 of the measured data
points would be included. An extension of Fig. I would show that PC would
asymptotically approach zero, whereas PN would oscillate in a cosine
squared manner periodically in about every 5.2 1 but the period would
increase with incteasing (and decreasing) KN.

The term K is selected such that K, = + (t-I)(c -m1) where a is
heuristically selected for P1 associated with N 1, the first measured event,
and a 2 is similarly selected for P2 associated with N-2, the second measured
event. Note that KN is not necessarily an integer associated with the
corresponding Nth measurement and thus (Q2 -4 1 ), may nor mey not be an integer.

In the empirical expression for PN (Eq. 7) the standard deviation
coefficient pr measurement does not appear. However, since P and PN serve
comparable Lunctions, and since k can be determined from Pc0 it is postulated
that the arithmetic deviation coefficient per measurement, kN, can be
determined from PN by a similar expression as Eq. 5. The expression is

k "*±1-2 in PN (9)
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"where kN is a function of %N through Eqs. (9) and (8) in a transcendental
fashion.

The measured value, m, is now expressid as

m - M + k•a. (10)

for each measurement N, where a1 is a constant and defined as the experi-
mental standard deviation. Thus if Mt and oa are known, m can be determined
as a function of measuring events.

The polarity of kN is selected as either + or - for the cusp
portrayal of the data points, whereas the polarity is alternating in sign
(+ and -) corresponding to the alternating periods of PN for the sinusoidal
portrayals.

Eq. (10) Is also a simplified form of an equation for a specific
physical phenomenon when the experimentally measured data are plotted as

a function of the independent parameter. Formally, each measured value
will be

Y =(X) F W (11)

-where Y is the measured value, F(X) is the equation governing the physical
phenomenon and k~pE is the arithmetic deviatiQn. Thus assuming for any
experiment the equation F(X) and the dependint constants. #re known, the
evaluation of F(X) as a function of the independent variable would be the
mean and corresponds to the theortitical curve. The arithmetic deviation,
hence Y, can be made as a function of measuring events if an a priori
determination of or van ba made.

III. EXAHPLFS. Eq. (11) shows that experimentally measured data are
periodic as a fuiction of measurement events about some smooth curve
governed by-the physical equation. If F(XM is well-behaved and if jE
cau be a pjor determined (at least heuristically if not by other means)
the expe~imental data. points should ba, in principle, predictive. The
predictiveness of the method was not subjected to experimental verification.
The reason is obvious since there can be no a priori determination of 01

and kN for Eq. (11) for an experiment. However, the published data points
of three txperiments have been cloaaly duplicated by the described method.
Three oxamplas indicate a posteriori verification that experimentally
measured data are periodle as well as predictive. (The calculations were
accomplished with a pocket calculator, and thus the duplication of the data
points were not optimized.)

The firat example is a relative easy one: The sinusoidal data portrayal
of Ref. 1. The equation of the lina was determined to be

F(X) - i(t) - 9.40 - 0.49t (12)
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where i(t) is the relative transient current and t is in units of equal
increments of time corresponding to the time of 1.37 nsec (average) between

lei I measured datum point. The first point was at 2.74 neec (or the 3rd
experimental point) which selected for the N-1. Note that the logarithmic
representation of the ordinate was portrayed in linear units. The terms
O, •2 and a for this example were heuristically chosen which generated
tIt points tLat were in agreement with the experimental points. The terms
atkd generated points are rlistod in Table I and the curve is shown in Fig. 2.
The generated data points are nearly in exact agreement.

Table I. Constants and "periodic" data points generated as a function
of measurement for thp zinusoidal example for Ref. 1.

F(x) - i(t) - 9.40- 0.49t

SaIm 0.00, 02 l.O0,0E, = 0.05

N KN PN kN kNog I(t) i(t)+khoE

1 0 1.000 0.00 0.00 8.06 8.06
2 1 0.607 -0.98 -0.05 7.39 7.34
3 2 0.103 -2.15 -0.11 6.71 6.60
4 3 0.057 -2.37 -0.12 6.04 5.82
5 4 0.517 -1.15 -0.06 5.37 5.33
6 15 0.956 -0.30 -0.02 4.70 4.68
7 6 0.888 +0.49 +0.03 4.03 4.06
8 7 0.393 +1.37 +0.07 3.36 3.43
9 8 0.016 +2.87 +0.14 2.69 2.83

10 9 0.165 +1.90 +0.10 2402 2.12

The second example is to duplicate Raf. 6 for the cusp periodicity. The
equation of the line is F(X) a R(t)w98.OvhereR(t) is the counting rate and
is a constant value as a function of time. The measurements were made: in
units of equal increments of time of 200 seconds (average) between eacb
datum point. The first point was at 600 seconds (or the fourth experimental
point) which was selected for N1 . A&ain cla, et 2 and of were heuristically
chosen. The constants and the calculated values are listed in Table II
and the "predictive" points are shown in Fig. 3(a) by the solid dots.
The open circles are the relative positions of the experimental data
points as estimated from Ref. 6 with which the predictive points are
not in agreement. The first twelve predictive points are nearly in exact
agreement with the experimental points numbers 4 through 15. However,
the 13th predictive point must be moved to the 18th experimental point
for the cusp periodicity to agree with increasing measurements. With
the exceptions of experimental points 16, 17 and 30, the other points
are either in nearly exact or close agreement.
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Fig. 2. Duplication of the sinusoidal portrayal of experimental points.
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Table It. Constants and "periodic" data points generated as a
function of measurement for the cusp example for Pef. 6.

F(x) -'R(t - 98.o0,

o 1.000 12 MOOE 0.8

N Pk kN p .R(t)+kNqZ

1 1 0.607 -0.98 -0.78 97.22
2 3 0.067 -2.39 -1091 96.09

3 5 0.956 -0.30 -0.24 97i76'

5 9 0,6165 -1.90 -1.52 .96.48

6 11 0.996 -0.09 -0.07 9793-
7 13 0.268 -1.62 -1.30 '96.70
8 15 0.265 -1.63 -1#30 96.70
9 17 0.997 -0.07 -0.05 97.95

10 19 0.180 -1.85 -1.48 96.52
11 21 0.357 -1.44 -1.15 96.85
12 23 0.979 -0.21 -0.17 97.83
13 25 0.117 -2.07 -1.66 96.34
14 27 0.440 -1,28 -1.02 96.98
15 29 0.949 -0132 -0.26 97.74
16 31 0.071 -2.30 -1.84 96.16
17 33 0.517 -1.15 -0.92 97.08
18 .35 0.911 -0.43 -0.34 97v66
19 37 0.039 -2.55 -2.04 95.96
20 39 0.586 -1.03 -0.82 97.18

.21 41 0.869 -0.53 -0.42 97.58
22 43 0.017 -2.85 -2.28 95.72
23 45 0.640 -0.93 -0.74 97.46
24 47 0.824 -0.62 -0.50 97.50
25 49 0.005 -3.26 -2,61 95.39
26 53 0.706 -0.84 -0.67 97.33
27 53 0.776 -0.71 -0.57 97.43
28 55 0.001 -4.22 -3.38 94.62
29 57 0.756 -0.75 -0.60 97.40
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The third example is to duplicate Ref. 10 for a curve of experimental
points that are less regular than Refs. 1-4 in the periodic portrayal.
The smooth curve of Ref. 10 could not be fitted to an exponential or power
equation. However, for F(X) the point by point estimated values for each equal
increment of t - 200 sec are listed in Table Mie, Te first point was
at 200 seconds (the second experimental point) which was selected for
R1. The parameters aja 2 and •£ were heuristically selected. Tie
constants and calculated values are listed in Table II, and the points
are shown in Fig. 3(b) by the solid dots. The. polarity of the 17th
through 29th data points wsre rcversed from the expectetl polarity to
exhibit agreement with the recoiutructed experimental values. The open
circles are theexperimental valuesas estimated from Ref, 10 with which the
predictive points are rt- in agreement. The positions of the periodicities
of the two sets of data Are in close agreement with the exceptions at the 8t,
20thand 25thpoint'•. The values ofmostof the data points, 21 of the 290
are nearly identical, and with the exception of predictive point No. 8.
the other seven are in reasonably close agreement.

IV. DISCUSSION. The subject of this paper encounters a paradox In the
distribution of the measured values of a physical parameter of an experiment. The
biinomial distribution is a mathematical treatment of random events whose
measured values are discrete, whereas the Caussian distribution is a mathe-
matical treatment of random events whose measured values are not discrete
and cannot be exactly duplicated. The measured values of a measurement
are considered to be independent of the sequence of the measurements and the
values randomly distributed about some mean. The independence and randomness
of the measured values from event to event "vary in an irregular manner that
defies all attempts at prediction" (12). However, since it was pointed
out in this paper that most plots of data points are portrayed in some
periodic manner, the data points, in principle, should be predictive.
The predictiveness was demonstrated in this paper, albeit ex 2ost facto.
The data points for three experiments were closely duplicated after
heuristically determining three constants. It must be stated that the
mean (tbe equation of the experiment) was known. Thus, in this context,
the measured data points are predictive, hence the paradox.

The Gaussian distribution is one (of two primary concepts) equation used
in this paper. The treatment of the equation to obtain the comparative
probability eliminated the dependence of the probability from all parameters
except one: The arithmetic deviation coefficient. Solving for the co-
efficient, it was found that the coefficient was a function of the probability
which was identified as a form of the self-information equation, The signi-
ficance of the relationship between the coefficient and the information
equation cannot be developed at this time, but that the Gaussian distribution
equation is a form of the information equation can be recognized.

The second concept is the heuristic equation relating the probability of
a measured value as " function of sequential measurement. If a well ordered
experiment is performed such that upon equal increments of an independent
parameter, the measured value is recorded in the identical manner, including
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Table III. Constants and "periodic" data points generated as a
function of measurement for the cusp-sinusoidal example for Ref. 9.

F(X) - R(t)

al- 0.00, 012 - 2"O09E " 0.3

N KN PN kN k(t) R(t)+kN3E

1 0 1.000 0.000 0.00 66.2 66.2
2 2 0.103 +2.13 +0.64 59.0 59.6
3 4 0.517 +1.15 +0.35 53.7 54.1
4 6 0.888 -0.49 -0.15 49.3 49.1
5 8 0.016 -2.87 -0.86 46.6 45.7
6 10 0.676 -0.89 -0.27 44.2 43.9
7 12 0.783 +0.70 +0.21 42.0 42.2
8 14 0.000001 +5.20 +1.56 40.3 41.9
9 16 0.655 +0.92 +0.28 38.7 39.0

10 18 0.688 -0.86 -0.26 37.4 37.1
11 20 0.010 -3.03 -0.91 36.2 35.3
12 22 0.854 -0.56 -0.17 35.1 34.9
13 24 0.601 +1.01 +0.30, 34.2 34.5
14 26 0.035 +2.59 +0.78 33.4 34.2
15 28 0.908 +0.44 +0.13 32.6 32.7
16 30 0.521 -1.14 -0.34 31.9 31.6
17 32 0.069 +2.31 +0.69 31.3 32.0
is 34 0.947 +0,33 +0,10 30.7 30.8 I
19 36 0.448 -1.27 -0.50 30.2 29.7

20 38 0.109 -2.10 -0.63 29.9 29.3
21 40 0.973 -0.23 -0.07 29.4 29.322 42 0.382 +1.39 +0.42 29.0 29.4

23 44 0.153 +1.94 +0.58 28.7 29.3
24 46 0.990 +0.14 +0.04 28.4 23.4
25 48 0.322 -1.51 -0.45 28.2 27.7
26 50 0.200 -1.79 -0.54 28.0 27.5
27 52 0.998 +0.06 +0.02 27.8 27.8
28 54 0.269 +1.62 +0.49 27.6 28.1
29 56 0.248 +1.67 +0.50 27.4 27.9
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time lapses, the data points appear to be portrayed in a periodic fashion in
about either every 3-4 or every 10-12 measurements. The probability of the
measured value is a function of the measurements for -3.00 S k-KN < +3.00
and follows a cosine-squared law that nearly duplicates the Gaussian distri-
bution probability. The probability dependence on measurements cannot be
derived from first principles but is heuristically justified by the fact it
enables the "predictive" values to agree with the experimental data.

The duplication of the experimental data points that are portrayed in a.
sinusoidal fashion is in itself not too profound. In fact, for Refs. 1-4,
the points can be readily duplicated by nearly any periodic mathematical
treatment. However, the heuristic method, when applied to the duplication
of the points that are portrayed in cusps (as in Refs. 6-9) and combination
of cusps and sinusoidsl. periodicities (as in Ref. 10), the method must be
considered as being significant. The significance is emphasized when form a
cutsory examination some of the data points appear to be random but are
duplicated by the method. Obviously, all of the published data points
cannot be duplicated by the limited treatment of'the heuristic method
described in this papaer

It Is poutulated that the sinusoidal portrayal of data points in
which the measured parameter does not have a fixed bound or physical
barrier. Examples of the sinusoidal characteristic would be the measure
of electron trapping an a function of time (Raf. 1), and the determination
of the beam displacement of a reflected electromagnetic wave as a function
of distance (Raf. 3).

It in postulated that the cusp-type portrayal of data points is charac-teristic of an experiment in which the measured parameter (the dependent

variable) has a fixed bound or physical barrier. Examples of the cusp
characteristic would be the "no influence" effect of source strength as a
function of time (Ref. 6), and the measurement of the length of ameter stick
by the eclipsing of the position of a light source by the end of the stick.

There are two baffling considerations that were required for obtaining
agreement of the points in two of the examples. The first is that two
experimental points had to be by-passed in Ref 7, and the second is that a
change of polarity for the arithmetic deviation coefficient for Ref. 10.
These considerations maybe resolved if the constants of. the heuristic equation
were evaluated simultaneously with the experimental data points of an
experiment performed in a human factors evaluation laboratory. In such a
laboratory, the constants may be determined from the nature of the experiment
and the experimental procedures, and thus in conjunction with the equation
governing the experiment, the measured data points may be indeed predictive.
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8tefaui- for valuable discussions and comments.

122



VI, REFERENCES.

1. J o. WeMyer, K. Zanio, and Me. Martini, °CdTo and Tapping Analysis,"
Proc. Into Symp. on Cadmium Telluride, P, Siefert and A. Cornet, ads.
(Strausbourg, Pr...1972) See Fig. 6.

2. W. Eleer, J. L. W. Pohlmann, P. R. Boyd, Mol. Cryst. 14q. Cryst. 200,
77-86, (1973)., See Fig. 2.

3. L. A. A. Read, H. Wong, and 0, E. Ressor, J. Opt. Soc. Am. 68 (No. 3)
319-322 (1978)o see Figs. 3 and 4.

4. T. WitkovJcz, IEEE Trans. Electron Devices, 25, 269-271 (1978).
See Fig. 2, curve 1.

5. J. J. Hill, private communication, Rockhurst College.
The cusps are also known as "hillocks."

6. P. Sieffert, 3. Berger, C. Scharager, A. Cornet, R. Stuck, R. 0. Bell,
H. B. Serrese, and F. W. Wald, IEEE Trans. Nu1. Boi. 23, 159-170
(1976). Sao Fig. 7, top curve.

7. C. H. Graham, "Discrimination That Depends On Wavelength t ' Vision and
Visual Perception, C. H. Graham, ad. (John Wiley and Sons, Ine., Now York
2nd Printing, 964), See Fig. 12,13.

8. T. Witkowicz, Locs. Cit, See Fig. 2, curve 2.

9. C. W. White, et al, J. Appi. Phys. 50, 3261 (1979). #19.4 Annealed Curve

"10. P. Sieffert, P., at al, Loc. Cit, See Fig. 7, bottom curve.

11. R. C. Gallager, Information Theory and Reliable Connunication, (John
Wiley and Sons, Inc., New York, 1968). sees. 1.2 and 2.2.

12. C. Eisenhart, and Me Zelen, "Elements of Probability," in
Handbook of Physics. E. U. Condon and H. Odishaw, edse (McGraw-Hill
Book Company, Now York, 2nd Edition, 1965) p 1-163, chap. 12.

123



,?/ /

VARIABLE TRANSFORMATION IN NONLINEAR LEAST SQUARES
MODEL FITTING

SAivars CelmioN
Interior Ballistics Division

U.S. Army Ballistic Researoh Laboratory
Aberdeen Proving Ground, Maryland

ABSTRACT. The numerical treatment of nonlinear model fitting
problems often can be simplified by manipulating the model equations.
Algebraic manipulations, including nonlinear transformations of model
parameters, do not change the numerical result of the adjustment.
Therefore, such manipulations can be a powerful method to improve
the performance of solution algorithms. Nonlinear transformations ofthe observations, on the other hand, do change the numerical results

unles the normal equations are transformed accordingly. The latter
transformation has been neglected by previous authors and this article
provides a complete met of formulas that are needed to implement
transformations of observations. The transformations are, however,
in general less useful than parameter transformations but may have
applications in particular situations.

1. INTRODUCTION. A mathematical model fitting problem arises
when one compares real observations with theoreical predictions. The
observations always contain observational inaccuracies and, likewise,
the theory of the prediction can be inadequate. If discrepancies
between observations and predictions are unacceptably large for a
particular situation then one is faced with the task to adjust in a
rational manner either the observations, or the theory, or both so
that an acceptable mathematical description of the event can be
established. The problem can be subdivided conveniently into three
subtacki, each of which requires a different approach and background
information.

First, one has to chose a model. Normally, this requires
supporting information from engineering, physics, geometry, etc.,
which may suggest or postulate a reasonable mathematical description
of the observable event. We shall assume in this article that the
model is formulated as a system of equation. containing observations
and, possibly, also some undetermined model parameters.

Once the model is selected, one can compare predicted values
of observable quantities with corresponding observations. The
comparison provides the basis for a rational adjustment of the
observations and/or of the model. This subtask of the problem is a
purely mathematical part of model fitting and it belongs to the
category of ill-posed problems. Its mathomatical/numerical treatment
is independent of the other two subtasks, i.e., of applications. We
shall be concerned with this part of the problem in the present article.
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I!
After the adjustments have been carried out, one has to validate

the mathematical model, unless it has been prescribed, e.g., by the
geometry of the event. The validation involves typically, but not
necessarily, a statistical analysis of the discrepancies between ob-
servations and predictions. The result of the validation process may
be a now formulation of model equations and subsequent fitting, i.e.,
a repetition of the whole task until some validation criterion is
satisified. We shall not discuss this part of the problem, noticing
only that the results of the second subtank provide thq data basis
necessary for a validation.

If the model equations are not linear then the model fitting
problem generally leads to systems of complicated simultaneous equations•iland corresponding numerical difficultiew may arise. Often the numerical

treatment can be simplified by a reformulation of the model equations,
particularly by introduction of now variables through variable trans-
formations. Such mantpulations have been suggested in textbooksl-7 and
are routinely used in applications. Examples of recently published
applications where variable transformations have been used are refer-
ences 8, 9, and 10.

A closer investigation of variable transformations in model fitting
problems suggests that the formulations should be used more cautiously
than some of the texts suggest. Therefore, we shall present in this
article an investigation of some consequences of the transformations
and draw conclusions about their usefulness for the simplification of
the ramerical treatment of model fitting problems.

In Section 2 we shall formulate the mathematical model fitting
problem in general terms and discuss the effects that can be anticipated
from manipulations of model equations. In Section 3 we shall specialise
the considerations to nonlinear least squares problems and produce
explicit formulas that are needed in such problems. Some examples will
be presented in Section 4, and Section 5 will summarize the conclusions
that can be drawn from the theoretical discussions and from examples.

2. GENERAL ASPECTS OF MATHEMATICAL MODEL FITTING. Let the model
equations be

A(X)e 0, (2.1)

where XeRn is the vector of all observations, etRP is a model parameter
vector, and A(X) is an operator that operates on e and has a range
r. * We assumne that the following relations hold between the dimensions
n, r, and ps

n > r > p 0. (2.2) 1
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4 - By permitting the dimension p to be zero, we include in our consider-
ations also cases in which the modtl equations do not contain free
parameters. Then equation (2.1) reduces to A(X)-O.

Typical for applications are cases in which the r equation (2.1)
for e are independent and, because of (2.2), do not have a solution.
Then one replaces the model equations by another system

i•(X)o - 0, (2.3)

chosing the operator i(X) such that it approximates A(X) and has a
solution. The determinalion of MX) can be conside:red as the central
part of the model fitting problem.

In order to have a measure for the approximation we introduce
a metric for the oj'erators. Let p[i(X), A(X)) be a itetric. Then one
can turmulate the mathematical model fitting as the following con-
strained minimization problem:

A(X)e - 0 , W{pti(X), A(X)] mi, (2.4)

where W{0) is generally a convex object function. ThA choice of the
metric p and of the object function W{0) determines the type of the
'model fitting, e.g., leact squares, maximum norm, etc.

We shall now discuss the selection of an approximate operator
A(M). First, we notice that the model operatore A(X) and A(X) are
generally needed and defined oi.`y within a finite neighborhood of the
observations X. Therefcre, assumptions about properties of the operators
need to be made for that neighborhood unly. Let the neighbo'thood
consist of all points Z - X+C, whereby C is restricted component-wise
by

Y , <- i , 1i' i , 2 , .. . , n . (2 .5 )

The intorvals (y , r ) normally contain zero, but exceptions are
possible and do ýccui in applications. Second, we assume that within
the neighborhood (2.5) A(Z) is a continuous function of Z. Then a
"reasonable choice of i(X) is

i(X) - A(X+4,). (2.6)

The choice achieves a natural parametrization of the approxime.tion.
The approxlmation parameter is the vector Ccn and the operator A(X)depends continuoudly on the parameter within the restrictions (2.5).

The parametvized model fitting problem can be formulated as
follows:
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A (X+C) " 0,

W{p[A(X+C), A(X)I} min. (2.7)

The quantities to be determined by equetion (2.7) are the approximation
parameter C and the model parameter e. We assume that the solution
vector C is within the limits specified by equation (2.5).

We will need in the sequel some differentiability propertias for
the model operator. As far as X is concerned, we assume the propertims
to hold within the neighborhood (2.5). With respect to 0 w2 assume
that a similar neighborhood eý-ists in the vicinity of the stolution of
equation (2.7) in which A(X)e is a continuous function of e. Theo
differentiability assumptions vre that A(X+C)O is twice differentiable
uith respect to all its n+p arqusents within "'he cartesian product
rpace of the neighborhoods of M and e. We also assume that within
that space

-nk - r, (2.8)

and define

P(A(Z), •X)) I IZ X 1. (2.9)

P is a metric within the neighborhood in which (2.8) holds. We also
assume that the model equations do not contain redundant parameters.
The assumption may be expressed av the requirement

rank DA.X) (2.10)

With the specialization (2.9), the model fitting problem becomes

A(X+C)6 - 0,

W{p[A(X+C), AX)} I- W(cIi} m min. (2.11)

Equation (2.11) is an abstract formulation of common model fitting
problems. The difference C between the observations X and the
"corrected observations" X+C is called the residual vector. In the
formulation (2.11) we require that a norm of the residual vector be
miinimized, subject to model equations which have to be satisfied at
X+C. The model parameter vector 8 is not essential in this formulation.
The number of model parameters may be zero and it is normally ordirs
of magnitudes smaller than the numwier of appioximation paraAketevs, i.e.,
residuals. The determination of 8 can be, of course, in some applica-
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tions more important thaen the determination of C, but this is not
always the case.

A least squares model fitting problem is a special case of (2.11),
characterized by a particular choice of the norm in the definition
(2.5), and of the object function W{p). The least squares metric is

peA(Z), A(X)1 - HJz-xHJ - E(z-x)TR.(z-xf) , (2.12)

where P is an estimate of the varianoe-covariance matrix of the
observations. The least squares object function is

W{p) - p (2.1?)

Therefore, the least squares model fitting problem is defined by

h(X+c)t M 0, )
w 11011 2 -calc- .min. (P.14)

In equation (2.14) we have used c and t instead of C and O, respectively,
thum indicating the least squares values of both parameter vectors.

The use of R"1 as a norm matrix in the definition (2.11) makes
the n•rm tc I I and W dimensionle-, which is very jonvanient when
fitting results are compared. If the variance-covariance matrix R
is known exactly, then the solution of equation (2.14) is a maximum
likelihood solution of the approximation problemll. The same
maximum likelihood solution is obtained if R approximates the variance-
covariance matrix up to an unknown factor. In applications one has
to be content with an estimate of R. Then often the off-diagonal
elements are assumed to be zero as a matter-of-course. Because the
results of the model fitting depend on R, such assumptions should
not be made wvithout having reason; that zero is a better approximation
than a non-zero value. The theoretical treatment is not complicated
by the assumption that R is not diagonal, nor are the numerical
complications unsurmountable. Realistic estimates of R are, however,
important for the interpretation of the results, and for the validation

* Iof the fitting.

* ~We solve the optimization problem (2.11) or (2.14) uNing Lagrange
multiplier technique, and call t e multiplieve correlates, as usual
in adjustment problems. Lot KeR be a correlate 'vector and let the
modified object function be

w{ lcH rTA(x+c) e
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Necessary conditions for the solution of the optimixation problem
are obtained by setting tero the partial derivatives of W with respect
to the unknown C, 0, and K. This yields the following set of normal
equations.

SwiCJ) -- tK A(xC)O -0 , (2.16a)

T TFa
a (KTA(X+C)el - o, (2.16b)

A(X+C)6 - o. (2.160)

The solution of the model fitting problem (2.11) is among the solutions
of equations (2.16). On the other hand, one cannot guarantee that a
particular solution of the normal equations corresponds to the
absolute minimum solution of equation (2.11), nor is the uniqueness
of the solution given. An investigation of these complications iu not
the subject of this paper. Mostly. such problems can be, and are
taken care of by ad hoc measures based on background information from
the application. Therefore, we simplify our present theoretical dis-
cussion by assuming in this section that a numerical solution of
equations (2.16) can be obtained, and that it has been verified as the ,!absolute minimum solution of equation (2.11).

In least squares problems, the first term OW/MC in uquation (2.16a)
is linear with respect to C. Nonlinear expressions which could be
possibly simplified by algebraic manipulations may occur in the second
term in equation (2.16a), and in equations (2.16b) and (2.16c). The
structure of these terms strongly depend on the form in which the model
equations (2.16c) are cast, and it is obvious that simplifications can
be achievcd by proper formulations. Particularly, one does not have
to insist that each model equation be solved for a "dependent" observa-
tion. Such a form is assumed in meot textbooks on data reduction awid
postulated in computer programs for data reduction problems. Qutte
often an implicit formulation of the equations (2.16c) can be simpler,
producing also simpler expressions for the derivatives in equations
(2.16a) and (2.16b). The solution of the problem (2.11) is, of course,
independent of the particular form in which the model equations are
cast. This remark is trivial in the present context, and it is a
consequence of the formulation of the model fitting problem by equation
(2.11). Reference 12 reports about numerous unsuccesmful attempts to
achieve a similar invariance statement when the problem was formulated
differently.

The aforementioned manipulations of the model operator A(X)e Can
also include nonlineair transformations of the parameter 8. Such
transformations do not affect the definition of the metric p, bmcause
the retric of the operator J.s independent of the operand. Therefore,
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the transformations do not affect the first term in equation (2.16a)
either and are a powerful tool for the simplification of the rest of
the equations. An example in which nonlinear parameter transformations
are used to linearise the model equations is reported in reference 9.
In Section 4 we shall give other examples.

The formal procedure of replacing parameters is as follows:
Suppose that one wants to replace the parameter 0 by 0 whereby both
parameters are related by a nonsingular function

8 - w(a). (2.17)

(Regularity of the transformation need to be assumed only within a
neighborhood of the solution.) Lot the model equations be in terms
of a

0 o. (2.16)

The operator A can be obtained from A always by the definition

A (X)l 0 AXMw(a), (2.19)

however, often one can find other equivalent formulations that are
simpler. The metric p associated with A is defined as in equation
(2.9)

Elm, .C) 11 Z-XII. (2.20)

With this definition and the somae object function W(p) as before one
obtains the normal equations

W [ - L 0, (2. 21a)

lei- [KA(X+c) - 0, (2.21b)

!XFU-0. (2. 210)

The aolution vectors of equations (2.16) and equations (2.21) are
relatei by

PC- , i - w(o) (2.22)
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The vectors K and K can be computed from these values using formulas
given in the next section.

e nThe relation (2.22) in again a simple consequence of the formula-

tion (2.11) of the model fitting problem. Bender 9 proves the
correspondence (2.22) for a particular transformation and application,
and indicates that previous developers of software for such problems
were not aware of the relation.

If the solution of the model fitting task has bean found from
equation (2.21) in terms of a, but the parameter vector 0 is of
interest, then one needs in addition to equation (2.22) another formula
for the accuracy of 6. Lot us assume that the solution algorithm for
equation (2.21) has also provided information about the accuracy of
a in form of'an estimate VO of the variance-covariance matrix of the

components of 0. (In Section 3 we shall give formulas for VO in least
squares problems.) Then an estimate of the variance-covariance matrix
V0 of the components of e can be obtained by applying the linearized
law of variance propagation to the relation (2.22). The result is

V V " (2.23)

More complicated are consequences of such manipulations of the
model equations that involve transformations of the observations. This
is so because the transformations now affect the definition of the
norm p. Next, we shall consider much transformations.

II-, Let a transformation of observations be

Y - v(X) (2.24)

with the inverse

X " u(Y)

We assume that the transformation is regular within the neighborhood
(2.5), including the solution X+C, and that the function u(Y) is
there twice differentiable. The model equations (2.1) are replaced
by equivalent (usually simpler) equations

im 0. (2.25) '

The operator A(Y)e can be obtained, e.g., by the definition
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.•A(Y)e a A(u(Y))e, (2a6),

but# as in the case of parameter transfomrations, usually other
equivalent formulations can be found that are simpler.

tfWhen we formulate the model fitting problem in term of Y, we
have to keep in mind that the goal is to minimixe the distance C
between the actual observations X and their oorreOsetd values X+C.
In least squares problems, only such a minimination yields under
conditions a maximum likelihood solution. Then the minimixation
problem (2.11) is

Y v(X),

A(Y+)e o, (2.27)

W r-u(Y+B)- x1) *min.

The normal equations for the problem (2.27) are

w(IU(Y+B)-xl I).- , (XTi(Y+S)8J 0, (2.28a)

L (iCi(Y+w)e] 0, (2.20b)

A(Y+B)a - 0. (2.28c)

The first term in equation (2.28s) is not linear with respect to the
unknown B unless the transformation (2.24) is linear. Therefore, a
nonlinear transformation that produces an operator A(Y)e which is
simpler than the original operator A(X)O, introduces nonlinear terms
in equation (2.28a). The new nonlinearities may offset the advantages
gained by a simplification of the other terms in the equations.

We shall pursue this point further in the next section and show
in detail how the normal equations and alqorithmu are affected by
transformations of observations specifically in least squares problems.

S3. LEAST SQQAlS MODEL FITTING We consider in this sectiun
the effects of variable transformations on least squares model fitting
problems. We shall first derive the basic equations for nonlinear
least squares problems in terms of the original observations, and then
show how the equations are affected by a transformation of the
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observations. We simplify our notation by defining a vector function
F(X,O) by

r(x,O) a A(X)e. (3.1)

Then the model equation (2.1) is

- F~xjIr o 0, (3.2)

and the least squares model fitting problem (2.14) is

F(X+cib) 0 0,

11c112 cT ' min. (3.3)

in the sequel we will use subscripts to denote derivatives.
Also, because derivatives of F(X+ct) with respect to c are identical
to derivatives with respect to X we shall use the subsacript X for both.
Thus# eag.,

a aa

Fx(X+Cot) aX F(Xtc,t) a 80 F(X+ot)

and2 82 [T ÷€)] 2

K(X+c~t) t[ (X+ct)T a(X+ct)]

are matrices with the dimensions rxn and nxp, respectively.

Using this notation, the normal equations corresponding to the
prozlem (3.3) are

R-1 - kT x(X+oet) - 0, (3.4a)

SkTF(X+c't) - 0,

F(X+C,t) - 0. (3.4c)
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The normal equations are in general nonlinear with rospogt..to q
and t. Therefore, their numerical solution will require some kind of
iteration. ne obtain second order iteration equaioos 4o9,equat ions
(3.4) by expanding the normal equations at an approxiiaeton to the
solution and keeping the linear terms of the expanoion..Let the
"approximation to the solution be C, K, and T, and that the correeponding
corrections be s, K, and T. Then the expansion yields the following
Newton equations for the corrections:

[ T. 1T I+t -R(wT - i xt - - C, (3.5a)

K + FT,"K'K +0, (3. Sb) 0
•txs * t (•• • tt•

X + 1tT•-F. (3.So1)

The arguments of r and its derivatives in equations (3,5) are X+C atd T.

Newton-Raphson iteration equations can be established by suitable
manipulations of equat.ions (3.5)8,13,1415. A mat of such iteration
equations are given in the Appendix, Most authors simplify equationrs
(3.5) by neglecting all terns that contain second order derivatives 1' 1 , 1 6 , 1 7 .
This yields so-called Gauus-Newton procedures that have theoretically
only linear convergence and that also may have other peculiarities1 3 .

The final stop in a model fitting problem is to obtain variance
estimates of the soletion in terms of the estimated variances of the
observations. We shall restrict ourselves in this article to the
estimation of the accuracies of the least aquares value t of the
parameter veator, and show how the estimation formulas change due to
transfornmatlons of observables. We shall use the linearized variance
propagation formula for the estimates. Estimates of the accuracies
of the corrected observations xmX+c can be obtained by analogoup
processes.

The formulas can be derived from the 1,.near terms of an expanwion
of the normal equations (3.5) at the solution1 3 . Let dx, dk, and dt
be the differentials of the solution vectors xuX4c, k and t,
respectively. Then the expansion yields

-R(kTF) 1x]dx - - h(k TF) dt dX, (3.6a)

(k'TF)&X + BIT dk + (kT F) dt Or (3.6b)
tX t tt

Yxd + P tdt -0. (3.6c)
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The arguments of F and its derivatives in equations (3.6) are x and t.

By manipulationu of equations (3.6) that can be done in various
ways1 3 018 one obtains linear relations between dt and dX, and
between dx and dX, respectively. Let the former relation be

N dt -S dx. (3.7)

(Explicit formulas for N and S are given in the Appendix.) Then the
estimated variance-covariance matrix Vt of the parameter vector t is

Vt - NIs8 R (T1)* (3.8)

It is obvious from the derivation of equation (3.8) that Vt which
itself is only a linearized approximation depends nn second order
derivativea of V. (The formulas in the Appendix show explicitly this
dependency.) Neglect of the second order derivative terms renders a
formula that is theoretically loes than first order accurate. Therefore,
such a neglect has to be justified in each application by providing
estiattes of the nagnitudes of the neglected term. Of the cited
references, only in references 13, 14, 15, and 18 complete first order
formulas are used.

Next, we introduce variable transformations into the least squares
model fitting problem. We can restrict ourselves to transformations
of observations because, ap shown in Section 2, transformations of
model parameters have the same effects as simple 'algebraic manipulations
of the model equations.

Let, as in Section 2, the transformation be given by

Y -vX) (3.9)

with the .4.nvease

X - UM.

In terms of Y, the least squares nodel fitting problem is defined by

Y - v(X) (3.10a)

l1(Y+bt) - 0, (3.O1b)
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I Ju _+b)-x1 12 - tu(y+b)-X1l ' _u(Y,'b)-x M min. (3.lc)

Equation (3.10b) is a model equation, equivalent to equation (3.2)
and expressed in terms of t.

The noral equations for the problem (3.10) are

(Uy(Y+B3l [u(Y+b)-X3 - k •H(Y+bt) - 0 (3.11a)

kTHt (+bft) 0, (3.1lb)

H(Y+b,t) - 0. (3.llc)

Corresponding Newton equations for corrections Of K, and T of approxi-
mate solutions B, K, and T, respectively, are

[I-•.Q=•-QH. (K+C) - g (KTH) - - , (3.12a)

T +

where

Q-v v -C U)-IR Ru) , (3.13)
X X y Y

A - vx [u(Y+B)-X] - vxGC - (u )-l.C, (3.14)

x x y

S-(KTH)y- (uTR 'C) (3.15)

yy yy

The argumaents of the functions H and u in equations (3.12) through
(3.15) are Y+B and T, and the last term in equation (3.15) is diffar-
entiated assuming C-u(Y+B)-X to be constant. The term is a symmetric
nxn matrix containing second order derivatives of the transformation
function u(Y).

137

,7 T . ,



A comparison of equations (3.12) with equations (3.5). shows that
the important changes in the Newton equations due to the transformation
(3.9) are in equations (3.12a). The rest of equations (3.12) is formally
identical to the corresponding terms in equations (3.5), if F(X,8) is
is replaced by H(Y,B),. In equations (3.12a) we oee three other replace-
mentao the estimated%,,yariance-covarianoe matrix R is replaced by Q,
the right hand side ,C4, replaced by -4, and the tem (KTF)_ is
replaced by E. 

X,

The replacement of R by Q corresponds to an application of the
linearized variance propagation formula to the transformation (3.9).
The replacement of the right hand sides is a linearized transformation
of the residuals C into the Y-space. If the transformation (3.9) is
linear, then only these two replacements occur. If, however, the
transformation is nonlinear, then the last term in equation (3.15)
does not vanish and, because it contains second order derivatives of
u(Y), it can be quite complicated. This complication car. offset
algorithmic advantages gained by a simplification of other terms in
the Newton equations.

Iteration algorithms and formulas for the variances of the solution
again can be obtained by manipulations of the Newton equations. Explicit
formulas are given in the Appendix. We notice that second oxder
Newton-Raphson algorithma necessarily contain second order derivatives
of the model function H as well as of the transformation function
u(Y). The coding of the ieccnd order derivatives can, of course, be
avoided if first order Gauss-Newtoi algorithms are used. However,
variAnce estimates of the solution can be calculated to a first order
accuracy only if all the cecond order derivatives are available.

The author has carried out numerical experiments to determine
whether a wolution of equations (3.11) instead of equations (3.4)
has algorithmic advantages. Tht: experiments were done with the
utility programs described in reference 15. The programs permit one
to carry out the calculations either in terms of X, or in terms of Y,
and to use either Newton-Raphson, or Gauss-Newton algorithms. The
experiments were inconclusive. In some examples the algorithms con-
verged better when the problem was formulated in X, in other examples
a formulation in Y-v(X) produced better algorithms. However, tho
differences 1n performance were never significant. This result is in
strong contrast to similar experiments involving transformations of
parameters. In those experiments, a suitable parameter transformation
often had a dramatic effect on the performance o2 the solution algorithm.
Some examples are given in the next section.

Another possible benefit from nonlinear transformations of
observations could be a. simpler problem formulation. The complexity
of the normal equations is thereby of secondary importance, if one
uses an available general utility program for their solution. However,
the model equation. must be made available to the utility program#
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which means that the equations must be prograemmd. Then one has the
choice to program either the function F(XO) with its first and second
order derivatives, or the two functions H(Y,O) and u(Y) w! " their
derivatives. if the transformation is nonlinear, then normally the
programming of H and u will not be simpler than the programming of F.
An exception may be the situation where the same transformation u(Y)
(e.g., polar-cartesian) is used for several problems with different
model functions H(Y,M), so that u(Y) has to be programmed only once.

We may conclude that in general a transformation of observations
offer little or no advantages over a formulation of the model equations
in terms of the original observations. There are, however, other
useful applications of such transformations. First, a graphical
display of the results oan be clearer in terms of Y then in terms of
X. Second, and more importantly, the transformations can be a con-
venient method to derive a "falsified" problem that can be solved
easily and that provides initial approximations to the unknown least
squuyes inolution vectors. One can falsify the problem, e.g., by using
a nonlintar transformation but linearising its effects on the problem
formulation. A simple and effective falsification is to replace the
problem (3.10) by

Y - v(X), (3.16a)

N(Y+b,t) - 0, (3.16b)

T -1b [uT(Y)R u Y (Y)lb m in. (3.160)

The formulation is identical to the correct formulation (3.10) only
if the :rAnsformation is linear, but the normal equations for the
false r.:oblem (3.16) are simplet

Q0-b -. KTH (Y+b,t) - 0, (3.17a)
y

K.• . (11+b,t) - 0, (3.17b)

H(Y+b,i:) - 0, (3.17c)

where

-1 T -1
SQ - [u '()]- Rtu (Y)]' " (3.l18)

9 Y Y
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This system can be much simpler and easier to solve than equations
(3.4) or the equivalent equations (3.11). Its solution is, however,
not the least squares solution but an approximate solution of unknown
quality.

initial approximations to the solution also can be obtained by
other falsifications in addition to the one described, or instead
of it. Such falsifications are, e.g., assumptions that certain
observations are error free, that some correlations are scra, that
some model parameters have prescribed values# etc,

4. EXMPLES. The first example is a case involving transformation

between polar and Cartesian coordinates. We shall compare results
that are obtained using the approach of the previous section with
results that are obtained by following suggestions by other authors.
in data processing literature one finds different suggestions. The
simplest one is to treat the problem after transformation as if the
transformd quantities wore observed. It is clear from the discussions
in Section 2 that such an approach does not produce the least squaresAsolution, i.e., it does not minimize W{IMcP), even if the transfor-

mation is inear. The most sophisitioated suggestionl,8, 1 0 is to
apply the transformation (3.18) to R, i.e., to solve the system (3.17).
As we have seen in the previous sechion, this approach yields the
least squares solution only if the transformation Y-v(X) is linear.
The following example illustrates the practical consequences of such
a problem falsification.

Let the observations be distances ri and azimuth angles Oj, and
let the model equations represent a straight line in cartesian
coordinates. Then the model equations are in terms cf the original
observations

rsin - a -brComoS 0

r 2 sin 2 - a br2 com 2o 0

F(r.Oa,b) - (4.1)

The transformation of the obaervations into cartesian coordinates are

xsi" r- co•iu ,

Y, i: "i sinoi i , 2, ... n n4.2)

140



anA the model equations ae in texus of the transformed observations

a - bx1 -

"Y2 -a - bx2  , 0

H(X,Y;a,b) (4.3)

A ,y -a- bx 0

The Jacobian matrix of the transformation is

( J2 0(4.4)

n

where

9(xiii /. OO*i sinil
J ____ 11 I )04 (4.5)

8(r1 14i) - sin* r coso

We assume for simplicity that all observations are independent
with estimated standard error* Ori and e"i, respectively. Then the
estimated varianoe-covarianco matrix R is the diagonal matrix

2
arl 2

2 0
e r 2

1(4.6)

3 0 *2
rn 2

14;
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The transformed variance-covarianoe matrix Q is aocnrding to equation
(3.18) the block diagonal matrix

I 2

T
J RV1  (4.7)0%

where
coo ie•°2' +Q 2ir 2 in2 (a2• ~e 2r"i r 2i sino osi°°'

Q1 ( 2  r) 2 2 2 2 2  2  2 (4.8)

For a numerical example we take the ten points listed in Table
I as observations and assume that Lheir standard errors are

4i
e " 0.048, e~i - 27.50, i - 1, 2, ... , n. (4.9)

"We made three adjustments. First, the r,4-data were used
together with the model equations (4.1). In the uecond adjustment,
the x,y-data were used together with the model equations (4.3) and
the transformation function (4.2) in a utility program1 5 based
on the normal equations (3.11). The results of both adjustments were
identical, as they should be, and they are listed in Table 11. The
listed standard errors of the parameters are the square roots of the
diagonal elements of Vt, computed with formula (3.8). The correlation
coefficient cab is the off-diagonal element of the correlation matrix
Ct, defined by

Ct " VtDt (4.10)

where Dt is the diagonal matrtx of Vt. The standard error of weight
one is defined by

to [ T- .1. n-p (4.11)

142

~~~~~~~~~~~~~~~~~~~~~~~ý A v .. . .... • .. .. ...... ,. ,....- ....• ' • :.N:•..... i. . ., ....' ;• •



Figure la shows the result of the adjustment in the 4,r-plane,
i.e... in the plane of the original observations, The accuracies of
the observations are indicated by error ellipses around the observed
points. The adjustment is indicated by connecting the observed points
with the corresponding corrected locations on the fitted curve. The
figure shows that all adjustments are in the direction of largest
uncertainties.

Figure lb shows the same result in the xy-plane. The accuracies
of the transformed observations are again indicated by error ellipses,
corresponding to the transformed variance-covariance matrices ýi. In
this presentation the adjustments seem to be in directions othor than

* those with largest uncertainties. This is typical for nonlinear
transformations of observ&tions. The object of the fitting is to
minimize residuals of the original observations. The presentation in
the x,y-plane is distorted by the nonlinearity of the transformation.

In a third adjustment wo used the xy-data, the model equation
(4.3), and the variance-covariance 1 matrix Q, defined by equation (4.7).

The treatment, suggested by Deming and other authors, was described
in Section 3, equations (3.16) through (3.18), as a falsification of
the problem. The numerical results of this adjustment are listed in
Table II. They are different from the previous results, and the
increase of m indicates that the -olution is not optimal. We notice
also that the correlation coefficient ca has changed its magnitude
and sign.

* Figure 2b shows the results of the adjustment in the x,y-plane.
It indicates that the adjustment would indeed be optimal, if x,y were
the observations and Q was their variance-covariance matrix. However,
when the same results are plotted in the Oz-plane, Figure 2a, then
it becomes obvious that the adjustment has not achieved the goal to
minimize the residuals of the original observations *,r. The treatment
of transformations of observations in this form is a falsification
of the problem. The results are approximations to the least sqaares
solution, but since the quality of the approximations are not known,
they may be useful only as initial approximations for a least squares
algorithm. However, in a case like this example, an initial approxi-
mation could be simpler obtained, e.g., graphically by drawing a
straight line in the x,y-plane through the observations.

"Next, we present an example for the linearization of parameters.
Let the model equation be

y - AxB e:p () 0, (4.12)
x
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where x and y are observations and A, S, and C ave model paramoters.
An equivalent eedel formulation is

2,my - a - b In -o- 0. (4.13) I

in equation (4.13) the parameters aj b, and c enter linearly. One
can expect a much better performance of solution algorithms if
tquation (4.13) is used. The parameter transformation is in thisexample

Aae
BVb (4.14)

and, e Oaoobian matrix, needed in equation (2+23) is

,• *a o . (4.15)
0 

0 
'

S8(a,b,c) 0 1 0
0 0 1

Another example in the trigonometric model

y - A Cos 0. (4.16)

An equivalent model is

y - a sin(cx) - b cos(ox). (4.17)

The corresponding parameter transformation is

a - A ain(B/C),

b - A cos(B/C), (4.18)

c 1/C,
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with the Jaoobian matrix

8 . .(a,bc) -1
a(aboc) B(A,,,c)

2 -1

sin(B/C) (A/C)cos(B/C) -(AB/C2 )cos(B/C)

03os(B/C) -(A/C)sin(B/C) (AB/C 2 )sin(B/C) (4.19)

0 o -1/c2

In this example, the model (4.17) in linear only with respect to two
parameters. However, the difference o' numerical treatments of the
problem is dramatic if one uses equation (4.16) or equation (4.17),
respectively. In numericalexperiments we found that in order to
achieve convergence, one had to start with parameter values A,B,C
within few percent of theitr leaot squares values. Using the parameters
ab, c and the model equation (4.17), one achieves fast convergence,
e.g., with the initial values a-b-0.

5. SUMMARY AND CONCLUSIONS. Manipulations of model equations
that produce simpler but equivalent equations can greatly facilitate
the preparation of the problems (e.g., computer programming) for
utility routines. The manipulations can also improve the performance
of numerical algorithms. If the manipulations are merely algebraic
and/or involve nonlinear transformations of the model parameters,
then their application is straight forward and their implementation
simple. if, however, the manipulations include transformations of
observations, then one has to transform also the normal equations
correspondingly. Neglect of this transformation falsifies the problem
and produces results that are of unknown quality and equally reliable
as, e.g., a graphical construction of a fitting curve. A correct
implementation of transformations of observations requires the pro-
gramming of the transformation function, including its first and second
order derivatives. It also does not improve the performances of
algorithms. Therefore, in most cases, it is more efficient to formulate
the model equations in terms of the original observations, thereby
avoiding the programming of the transformation function.

The need for second order derivatives of the model equations hasbeen often overlooked. In order to avoid the programming of these
derivatives, most authors suggest to use a first order Gauss-Newton
algorithm for the solution of the normal equations, instead of a
second order Newton-Raphson algorithm. The performance of the former
may be often comparable to the latter, because even with more iterations,
the computing effort can be less due to the simpler equations. Second
order derivatives of the model equations (and of the transformation
function) are, however, needed to compute the linear terms in formulas
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for variance estimates of the results. Their negleot cannot be
Justified cursory by the argument that linearized model equations are
elready second order accurate and, therefore, their second order
derivatives are not needed. it can be shown that-the linearised'emal
equations do contain these derivatives and, therefore, are needed in
the linearized variance propagation formula. Formulas for variance
estimates that do not contain second order derivatives are less than
first order accurate.

II
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TABLE 1. OSURVATZONS AND r AND CORRESPONDING
CARTESIAN COORDINATES

Sr x

206.60 0.559 -0.50 -.025

26.60 1.342 1.20 0.60

26.60 2.236 2.00 1.00

26.60 3,354 3.00 1.50

26.6 4.472 4.00 2,00

123.70 1.803 -1.00 1.50

92.90 1,952 -0.10 1.95

68.20 2.693 1.00 2.50

52.40 4.100 2.50 3,25

42.00 6,727 5.00 4.50

TABLE 11. * DJUSTbMT RESULTS

Case 1 and 2 (Original and Transformed Problem)

a - 0.381 + 0.298

b - 1.141 t 0.744 o_ , 0.015065

m - 1.24541

Case 3 (Falsified Problem)

a * 0.680 ± 0.407

b - 1.837 ± 0.259 cab -0.568659

m- 1.75646

The standard error of weight one, m , is not included in the standard
errors of the parameters.
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fig-ure la. Adjustment in O,r-space.

The data are shown with their one standard error ellipses and the
adjusted curve is shown with one standard error confidence limits.
The same results are shown by Figure lb in the cartesian xty-plane.
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Figure 2a1. Falaified Adjustment in x,y space.

The data are shown with their one standard error ellipses
and the adjusted curve in shown with one standard error
.onfidence limits. The same results are shown in Figure
2b in the cartesian xy-planh.
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Figure 2b. Falsifled Adjustment in x,y-space.

The transformed data are shown with their one standard error
ellipses and the adjusted line is shown with one standard
error oonfidenoe limits. The same results are shown in Figure
2a in the O,r-plane of observations.
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APP•NDZX

We provide a met of iteration formu las that are derived from

the Newton equation (3.6) by algebraic mAipulam.ions. First# we define
the following matricen:

A-* (r W (A.2)

r -:z+Aa(VTF)xx)-I (A.3)

z° 0 w, [o -Rriarx] (A.4)

SD1 .* (1C~f)t - •o1 R(KT)xt ,T

E4 - Dr +ADROF1  (A.8)

The iteration equations aer

n tG(FXC-F) + D0 E0  (A.9)

- (KrC-F) +VTFO+FR(KTF) Xt] R('F) X (A.7)0

1 tx Xt x XX

N E0 -For- . (EA.ll)

Numerical experiments have shown that the convergence of the
iteration in enhanced if thn equations are used in e muhiteration

mode by iterating alternatively on the parameters and remiduals,
respectively. For parameter subiteration only equations (A.9) and
(P.10) are used, atuming a'0. For residual subitoration one sets

V50 and uses equat 4.ons (A.10) and (A.11).
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(A.8In the variine formula (3.0) one uses N, defined by equationi ~(A,.8) and

,8 If r +x + O, (A.12)

Another equivalent set of Newton-Maphson iteration equations are
given in reference 13. None of the sets are nuverioally superior to
the other, and bcth require subiterations of pawameters aiLd residuals
for efficiency.

Gauss-Newton iteration equations can be obtained from Nowton-
Raphson iteration equLtions by setting all second order derivatives
zero. The conve::genoe of Gauss-Newton algorithms is inferior, but
in some applicatLons they have a larger domain of ,onvarqeno:e.

Iteration equations for least squares problemui with transformations
of observations can be obtained from the formulas in this Appendix
by substituting

Q for R

A for C

and

Bfor T)r

Expressions for Q, 6, and E in terms of the model and the transformation
functions are given in Section 3, equations (3.13), (3.14), and (3.15).

I
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ANALYSIS OF DATA WITH THE NONLINEAR LEAST CH1
SQUARE ALGORITHM

Richard L. Moore
US Amy Armament Research and Development Command

System Evaluation Office
Dover, NJ 07801

ABSTRACT. This paper reports on the use of the least chi-square
algorithm for fitting data to uon-linear functions of the parameters.
A well known computer program of the National Institutes Health,
SAAM-27, has been modified to use this algorithm. Comparison of the
ordinary least-squares algorithm with the new algorithm have been
made on four different problems as follows: Pressure waves in gun
chambers, control of aircraft yaw, a biomedical kinetic reaction
involving four measured components, and a very non-linear nuclear
reactor kinetics problem. The preliminary results indicate that tha
least chi-square algorithm is practicable, that the computing time is
increased for short problems, but evens out for long problems.

The least chi-square algorithm appears to be less failure prone
than least squares and a test has been inserted in the program to
preclude any iterations which might tend toward maximizing the
autocorrelations as could occur when their initial value is large.

I. INTRODUCTION. It is accepted procedure in analysing the
goodness-of-fit of experimental data to a theory which is nonlinear
in the adjustable parameters to estimate whether the residuals are
consistent with being drawn from a normally distributed population in
a random sequence. A common statistic to test the random sequence
hypothesis is the sum of the squares of the normalized autocorrelation
coefficients frequently called the Box-Pearce test. However, if
these tests indicate a lack of agreement with the hypothesis, no
rationale has been available to modify the parameters to obtain a
better fit. A solution to this problem has been provided by the use
of a least chi square algorithm which estimates the parameters which
give the greatest probability that the residuals arise from a popula-
tion with variance oa , and are sampled from a random sequence.

It. SUMMARY OF MATHEMATICS.

Following the notation of Aitken (1) and as previously derived by
Moore (2, 3), we define the following:

The transpose of a vector or matrix is indicated by a ' on the
symbol u'.



U is the vector of observed values.

is the vector of theoretical values corresponding to u.
-• * is the vector of the estimates of the unknown parameters,

is the matrix of the partials of y* with respect to 0*.

-1  1ro
0V I 0... 0 ;VII 0 001 0.. .0

001 0. .0 00.01

00010,0 000

V 00. .0.. 1
0 0[00. .. ..0

2r V (

(d). (d) /0, 21 (r) V

r: i +E1'r

Jul I

The term V is the inverse of the variance of r s.

!!jai

158

owl'-.



SI f'lThe calculaton of (6e) is done from the following expression which
is the same as the usual non-linear least square interation except
for the matrix r

[8e*i E [p*' r p*j-I p*' r u*.

In the usual case, r equals 1.

This expression has been programed into the Simulation And
Analysis Modeling (SAAM-27) (4, 5) program of Berman et. al, by post-
multipying P*', by r , and letting the program proceed from that
point, with the data for P*' being replaced in the memory by the
product P*'r. The ustual itetation continues from this point. The
computer program resulting from this change has been designated for
control purposes as SAACH, and has been tested on the CDC 6600 at
ARRADCOM, Dover, to determine the following questions:

1. How much change is there in the final parameter estimates?

2. What change, if any, is there in the number of iterations?

3. Wtat change is there in the time per iteration?

III. RXAMPLES. Four problems of different origin which use
different mathematical models have'been run on the SAACH program to
answer the above questions. In the first example: Gun Chamber Pre-
ssure Waves, the mathematical model used is the superposition of two
pressure waves generated by analytic models in the program, with the
adjustment of up to eight parameters to obtain the best fit to ob-
served data. In the second example, an aircraft control system
simulation, the mathematical model is a set of four linear differen-
tial equations, simulating the Yaw Damper system on an aircraft.
The3e equations were solved by a special procedure developed for
SAA14-27 by Berman et al. (6), with up to four adjustable parameters.
In the third example, a biomedical problem furnished as a test case
by Miss Rita Straub of Brookhaven National Laboratory, the mathema-
ticnl model was a set of seven coupled linear differential equations
with five adjustable parameters; this was solved by the same method
as used in the second case. In the fourth and final example: KEWD
Kinetics, a simulation of th& nuclear reactor transients of the
Kinetic Experiment Water Boiler, the mathematical model was an ex-

il tremely non-linear set of coupled differential equations as described
by Hetrick and Gamble (7). These equation were integrated by the
fourth order Runge-Kutte integration procedure of SAAM-27, with only
one adjurtable parameter.
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111-1 Cun Chamber Pressure Waves. -Unusual pressure waves sug-
gestive of an acoustic wave superposed on the normal gun chamber
pressure-time curve, have oc:urred in tests of the XM211 propellant
charges at zone 3 for the Hl01 projectile in the 155mm gun,
(Knuteliki, (8)). Analysis of these waves was initiated by Mr. B.
0. Knutelski of the Large Caliber Weapom Systems Laboratory using the
SAAM-27 program. A parallel analysis was made by the author using
the'SAACH program. In order to have as little bias as possible
injected into the comparison, the Knutelski model, data, and
procedure was followed as closely as possible. The resulting data
fit was later improved by using more data and improved models. The
history of this analysis is important because It illustra-tes theproblems which arise when no prior knowledge is available about the

beat-fitting model.' (This example is the only one of the four
examples for which prior knowledge was not available#)

The first case was run using the data shown as asterisks in Figure
1. This figure shows the theoretical fit by the following model:

P - P(l)sin(2w(P(2)t + P(3)))

+ P(4)sin(27f(P(5)t + P(6)))

Fig. 2 shows the theoretical fit by the same model as above using the
Least Chi Program (SAACH) with five autocorrelation coefficients (BGK
1.101).. Table 1 indicates the number of iterations to convergence
and the final values of the parameters (the initial values were the
same). The value of the sum of the squares (X1

2 ) is given for
comparison, as well as the autocorrelation coefficients up to rank 5.
Case ECK had slightly lower values of sums of squares, but the chi
square was much smaller for ROK 1.101. (The symbol X will be used
for the greek letter Chi for the rest of this ceport.)

i lBecause not all the data points available were used in this .
preliminary analysis, additional data were obtained and entered into
the computer using the same model and same initial conditions as in
the previous runs. In this case (BOK 3.002) the least squares

i•{ iteration stopped at seven iterations; as shown in Figure 3, the fitwas poor and the convergence obviously false. The least chi square

Iteration, BCK 3.102, using the same data terminated at 14 iterations
with an obviously better fit (Fig 4), but yet not a good eyeball fit.
The results of both eases are also shown in Table 1. The
"autocorrelatJon coefficients are large for case 3.102, and indicate

Sthe general lack of fit.
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Beccatie of this obvious lack of fit in BOK 3.102, the model was
changed to the following.

P P1 exp - (t'-t 1 )'/20 1 
2

+P2 exp( - (t-t 2 )2 /2,' ) X sin(2wf (t-t 3 ) + n/ }

Three parallel cases were computed once the fit was good enough
to permit iteration. Because of computing difficulties which arose
when trying to converge on six or seven parameters, the iteration was
Initially restricted to four parameters: Once the fit was good and
had converged using these four parameters, their final values were
used as initial values for a six-parameter fit. Finally, all eight
parameters were allowed to vary.

The results of this series of analysis are plotted in Figs 5, 6,
and 7, The case numbers are BGK-3.30356301-0, 3.30356511-5 and
3,30356311-10 respectively. The first his no autocorrelation
coefficients; the second, 5; and the third, 10, The parameters for

these cases are given In Tablr 2,, (note that the last three digits
only of the identifier are nused l~are). The estimated errors are the
estimnted standard deivations based on the value of the sum of the

SIn the case of 511-5 and -10, the value of XT2 was used
rather than the sum of squares. The statistical validity of this
procedure has not yet been established.

Results shown in Figures 5, 6, and 7 indicate that the apparent
fit to the data is best for the case of five autocorrelations, (Fig
6). In this figure the autocorrelations were weighted higher than in
Fig 7, where ten autocorrelations were used, and of course much higher
than in Figure 5, where no weight was given to the autocorrelations.

It is clear from Table 2 that ordinary least squares, case 301
indicates a sinall fractional standard deviation as compared to the
other two cases, but yet the fit to the data is not as good as seen
from its plot, (Figure 5).

The last row of Table 2, gives the values of a! , the experi-
mental variances assumed for these cases. These were arbitrary
numbers in this case, because the precision of the measurement system

Is probably much greater than the value given i.e., the variances
should be smaller. However, if smaller values wore used, such as
when case 511-10 is compared to 511-5, the weight on the sum of the
squares is greater but the goodness of fit appears to decrease.
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Table 2 also shows the effect of least chi-sqnare in terms of
number of iterations, and computing time. When five autocorrelations
were used, as in case 511-5, only a small increase in number of
iterations is found and a moderate increase in computing time as com-
pared to 301. If ten autocorrelations were used, as in 511-10, the
number of iterations increased, and the time increase was 1.8 times
greater, giving about double the increase in time for double the
number of auto.correlation coefficients.

Table 3 shows tha au ocorrelations up to order 20 for the three

cases. The values of EL , X2 z, and XT' for the number of
autocorrelations used (0, 5, 10) is shown in the last rows of this
table.

The difference in the assumed experimental variances accounts for
most of the difference between X1

2 for cases 511-5 and 511-10. If

the experimental variances had been the same, X1
2 would have been

62.96 or 57.62. Case 511-5 appears (in the figures) to fit better
because the first five autocorrelations as well as most of the later
autocorrelations are smaller.

111-2 Aircraft Control Systems, The block diagram of a typical
problem of this type is shown in Fig 8. To optimize the design four
parameters ma- be adjusted to give the best fit to a desired response
curve. These Oarameters are 6rPKV,pT and KO These correspond
to the parameters L(0,4), L(4,1), L(4,2) and L(4.3). A' previous
analysis of this example Osing SAAM-23 was available. As a result, a
completely unbiased comparison of least squares and least chi squares
prodecures was difficult to ensure. Two different approaches were
used on this example. First, the "data"--corresponding to the desired
curve--was used "as is" for comparison with the calculated response.
Second, a vector of a random sequence of normally distributed errors
from a population with variance of (.033)2 was added to the data
vector to simulate the effects of sampling error; this may be
considered to represent an allowable error or tolerance in fitting
the curve.

In the first approach, the cases to be compared are 2-6 and 4.
Case 1-6 was a reference run which adjusted four parameters, and
started near to the final values. It iterated three times and took
23.6 sec to complete. A iimilar case, 2-6 used the same starting
point and used six autocorrelations coefficients. It failed to im-
prove the fit in but one iteration, primarily because it attempted to
increase the autocorrelations in its attempts to improve the fit.
(Several cases of this type were found which led to a modification in
the least chi-square algorithm, to be discussed later). The data on
the parameters$ autocorrelations, and chi square are given in the
first column of Table 4. The fit to these data are shown in Fig 9.
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In an attempt to understand this problem various strategls% were
tried, but the results were nearly all similar. Case 4 and 4.1 are
typical. In these comparisons the number of adjustable arameters
was reduced to three, the value of the experimental variance was
increased to 1.0 and the rank of the autocorrelations was taken as 50
6, and 12. In the least squares case, case 4, as indicated in Table

*8, the calculation converged An six iterations, taking 11.2 sec. In
csse'4.1, with the same initial point, the three attempts iterated
for six iterations, for the same time, 11.2 sec, but because the
autocorrelations were large, and the value of X2

2 was large
compartd to X1

2, they all eventually diverged from a good tit.
These results indicated that the algorithm was not reliable when the
autocorrelations were large at the outset. To coriect this, an
internal al orithm will be added so that value of % which is
S1/(X2 -2X2 ) will not be allowed to be greater than .5. It is
believed that this change will prevent situations of this kind from
arising in the future, but the effect of this change has not yet been
fully tested. To determine whether the least chi-square technique is
valid for the Yaw Damper calculation, the second approach, the
addition of Monte Carlo errors to the desired response curve, was
used as a test.

For this second approach, a random sequence was added to each of
the data points. The value of oa was set at (.033)2, six autocorre
lations were used for the problem which was identified as CONRLM
4.011-6. Another run was used on the same data with the standard
least squares algorithm. Fig. 10, (CONRLM 4.012) shows the fit
obtained for the data and is typical of the results. Table 4 shows
the number of iterations for each case. It took 4 iterations for the
ordinary algorithm to converge, and only two for the least chi-sq.
algorithm with six autocorrelation coefficients (CONRLM 4.011-6).
The time for one iteration was 8.2 and 8.5 sec respectively. (Part of
the increase in time for the least chi-square case was due to several
attempts in both iterations to improve the fit by reducing the step
sire.) As shown in Table 4 the parameters L(0,4), L(4,2) and L(4,3)
appear to be different by significant amounts, and the difference
in the "significance" of the two results is considerable, (The
autocorrelations for case 4.011-6 appear well within the random
range.)

III.3 Brookhaven Example. A sample test came was received from
Miss Rite Straub of Brookhaven Nptional Laboratory. The exact nature
of the problem was unspecified but from the form of the differential
equations given in table 5, it appeats to be a kinetic problem in
which the material in component one decays into components two to
five, and component two may change into component one. Component
seven is composed of components three, four, and five. Although the
"S" and "K parameters may actually be unknown, they were assumed

II

.44!16

I I I 1"•' •;' ':'- -'-• ':= " A



known, because the present version of the program will not iterate
either type of linear parameters with the least chi-square algorithm.
The data were available for the amount of components 1, 3, 4, and 6
as a function of time, (where component 6 is the sum of components 1,

2, and 5).

Both the run with no autocorrelations and the run with 5
correlations (•IE 1.0023-5), took 7 iterations to converge. The
resulls for the two cases are compared in Table 6. Since the valuo
of X1, (31.24) is large compared to X2 (3.04), the major
emphasis in this case was on reducing the sum of squares, and thus it
is similar to the case run with no weight on the autocorrelations.
As would be expected, there is only a small difference between the
final values of the parameters of the two cases. Figs 10, 11, and 12
show the graph@ of the data fit to the components 1, 3, and 4.
(Component 6 shows an exact fit to data points and therefore a graph
of this component is not provided.)

111-4. Reactor Kinetics Example. This example illustrates two
thingst First the use of the least chi-square algorithm, and second
a good fit between data and a physically incorrect model. Hetrick
and Gamble (7) proposed a non-linear feed-bac17 term proportional to
the energy in the reactivity of the KEWB reactor to describe the
effect of void on reactor shutdown. Although this model gives a good
fit, later experiments (9) where the void amount was inferred from
measurements and where the thermal effects on reactivity were also
carefully measured, showed that shutdown was due to thermal, not void
effects. In the simulation, the effect of the energy on void forma-
tion was simulated by the parameter L(11, 1). The functions corres-
pond, in numerical order, to the functions used in the simulation:
(1) Nuclear reactor power level, (2) Mean temperature, (3) Mean void
volume, (4)-(9) Delayed neutron groups, (10) Not used, (11) Energy
released to that time. The reault of the iterations is shown in
Figure 13, a logarithm plot of theoretical and experimental nuclear
power. In Table 7, three different cases are shown:

Case 1.003-0 was ordinary least-squares. The values of the
autocorrelations and chi-squares are shown for comparison with the
other two cases. Case 1.005-3 used three autocorrelations with a
small value of the experimental variance thus resulting in a large
value of X12. Both case 1.007-6 and 1.003-0 use 1 x 107 for the
experimental variance thereby reducing the emphasis on the sum of the
squares of the errors. All of these runs took four iterations to
converge.

Cases 1.003-0 and 1.005-3 give almost exactly the same results.
On comparing 1.003-0 with 1.007-6, a difference is found in the value
of the adjustable parameter L(11,1). The value of chisquare total is
smaller for 1.007-6, and thus this result would be chosen over that
of the other case.
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The value of the chi-square for the autocorrelation (X22 ) is
much smaller for case 1.007-6, aIthough X14 is slightly larger for
the same case--thus illustrating the trade-off between getting the
minimum as in ordinary least squares, and reducing the autocorrola-
tions as in least chi-equares. The data for Case 1.003 show the
values for R(1) to R(6) for comparison purposes. The data show that
the sul of squares does not increase from one to other appreciably,
but X2 , the Box-Pearce statistic, does change appreciably. Each
of the calculations gives a total chi square Vhich is too large to be
consistent with the residuals being drawn from a random sample.

111-5. Comoarison of Computina Time. Table 8 summarizes the
comparison of the number of iterations to converge, and the computing
time required. As seen in the previous discussions, the number of
iterations was usually about the same, except for two cases--the case
4.1 under the Yaw Damper, where the iteration with least chi square
failed to properly converge, and for the XK211 Pressure Curves where
the ordinary least squares took more iterations or failed to converge
As seen in the last column, for all the cases except the case 4.1
under the Yaw Damper, the computing time is comparable, with a ten-
dency for the computing time to be longer for least chi square than
for least squares. The relative difference is greater when the
original total computing time is short. This just means that, as
would be expected, it takes a larger fraction of the computing time
to compute the matrix r and post multiply it into P*' for cames where
the time Gf iteration is short.

IV CONCLUSIONS. Based on four different types of non-linear
theoretical models for data analysis, our results indicate thats

(I) Least chi-square is practicable for non-linear analysis.

(2) The computing line for least chi square is longer for the
models which use less computing time, but because the convergence of
this iterative procedure is somewhat better, the number of iterataons
(and particularly the number of "tries" per Iteration) is reduceJ,
thus keeping the total computing time about the same. Models with
longer integrating time would expect to benefit more from least chi-
square.

(3) With one exception as given below, the least chi-square
procedure appears to be less prone to failure to converge.

(4) When the autocorrelation are large and their weighted sum is
large compared to the chi-square for the residuals, the iteration
tends to produce a maximum value of the autocorrelations. A test has
been devised to prevent Fis situation from occuring..1
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(At the time of final editing and review of this paper, an error
war discovered in the programming of the calculation of the variance
of the autocorrelations, V, . The error amounts to only a few
percent but would make it i~fficult to reproduce the present results.
It is believed that the main thrust of the results of this paper
remain valid.)
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C CASE BGK BGK 1.101 BK 3.002 BGK 3.102
NUMBER n?
ITERATIONS 14 11 7 :14

P(M) 15095 15,89 .15,0 .19.48
P(2) 209.9 203.7 332.6 308.00

P(3) .722 .767 -4.16 2.97
P(4) 1.719 1.700 +5.67 1.38

T P(S) 2.93 X 103 3. 00 X 103 3.06 X' 103' 3.27 X 103
P(6) -1.885 -2.196 -1.80 -6.0

R(I) 1 .614 .586 - .843
2 .275 .252 - 646
3 -. 077 -. 076 - .428
4 -. 186 -. 175 -. 219
5 -. 209 -. 192 .046

X12 15.5 16.1 - 27.6
XT2 30.018 25,0 - 81.6

SICNIFICANCE -- .44 3.5

Table 1. Results of computer :mun on X04211 Pressure Oscilatlons
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CASE 301 511-5 511-10

ORDER

1 .717 .680 .696
2 .477 .427 .443
3 .286 .247 .248
4 .058 .027 .013
5 -. 113 -. 136 -. 160
6 -. 246 -. 258 -. 291
7 -. 303 -. 315 -. 346
8 -. 322 -. 334 -. 361
9 -. 307 -. 312 -.042
10 -. 245 -. 240 -. 276
11 -. 130 -. 104 -o155
12 -. 011 .031 -. 035
13 .069 .130 .048
14 .137 .217 .123
15 .110 .203 .106
16 .075 .168 .085
17 -. 028 .057 .0004

F 18 -,141 -. 068 -. 090
19 -,202 -19-.130
20 -. 235 -. 205 -. 145

X12 57.9 62.96 116.2
2 - 33.01 62.4X2 - 95.97 178.6

Table 3. Autocorrelations and Chi-Square for final model of XK211
Pressure Oscillations.

22 based on the first 5 Autocorrelations for Case 511-5,
and the first 10, for case 511-10
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CASE 2-6 4.012-0 4.011-6
NO. of ITER. 1 4 2

I1 L(O, 4) 18.6 17.70 18.58
L(4, 4) 53.1 53.11 53.02
L(4, 2) .605 1.094 0.605
L(4, 3) 10.27 6.204 10.26

R(I) 1 .769 -. 111 -. 110
2 .431 -. 230 -. 232
3 .144 .013 .014
4 -,040 .061 .068
5 -. 159 -.124 -.124
6 --- .029 .030

Sum of sqs .00275 .03147 .03138

X 12.011 28.90 28.82
X222 24.78 2.77 2.49
XT 24.79 31.67 31.31
Sld.f. -. 959 .273 -. 087

2 .250 (.033)2 (.033)2

Table 4. Results of Yaw Damper Calculations
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ITm4/CAS. KJ1 1.0021-0 K,3 1.0023-5

L(I, 2) .2155 .2199
L(2, 1) .4527 .4442
L(3, 1) .0431 .0431
L(4, 1) .0252 .0251
L(5, 1) .0743 .0824

RO() .122 -. 086
R(2) .065 -.052R(3) .009 .034
R(4) .227 -. 223

R(5) .179 -. 168

X12 31.22 31.24
X2 3.99 3,04
XTOT 35.21 34.28

Significance -. 026 -. 086

Table 6. Results of Brookhaven example calculation. Autocorrelation,
; X22,and XT2 for case KJE 1.0021-0 computed for comparison.

ITEM/CASE KWB 1.003-0 KWB 1.005-3 KWB 1.007-6

L(11,1) 5.318 X 10-4 5.3183 Xi0-4 5.262 X 104
R(1) .782 .782 .786
R(2) .44 .44 .453
R(3) .098 .098 -. 122
R(4) -. 2404 - -. 170
R(5) -. 316 - -. 274
R(6) -. 235 - .290

X2121.14 1.2 X 19121.89
2 36.71 35.0
X 2  157.85 156.89

TABLE 7. Results of Kinetic Experiment Water Boiler Calculations
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IA
ADJUST AUTO-CORR NO OF

CASE PAEAM RANK ITER TIME (SEC)

KEWB KINETICS

1.003 1 0 4 84.
1.005-3 1 3 4 81,
1.007-6 1 6 4 89.

YAW DAMPER

1-6 4 u 3 23.6
4 3 0 6 11.2
4.1 3 5,6,12 6 11.2 (FAILED)
4.011 4 6 2 8.5
4,012 4 0 4 8.2

BROOKHAVEN

1.0021 5 0 5* 14,9
1.0023-5 5 5 7 21.5 (15.2)

XM211 PRESSUIE

HCK 6 0 14 6.5
BGK1.101 6 5 11 11.

3.002 6 0 7 11.31-/FAILED
3.102-5 6 5 15 23.
3.102-5 6 5 11* 18.2

TABLE 8. Comparison of Computing Time.
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ON THE POWER OF BIRNBAUM'S TEST

Ray E. Schafer
Hughes Aircraft Co., Fullorton, CA 02634

ABSTRACT

Z, W. Birnbaum has proposed a hypothesis test procedure which, under fairly

general conditionsg does not require explicit knowledge of the critical values

of the test statistic. In this paper we investigate the power of the test in a

variety of situations. In particular we have considered situations In which the

underlying observations have normal and chi-square related distributions. We

show that the asymptotic power of this test is Identioal to the classical test using

the same statistic and that the Birnbaum test achieves its asymptotic power very

rapidly.

The normal case is considered both for complete and censored samples.

1. 0 INTRODUCTION

The classical hypothesis testing problem involves the sampling distribution of

the test statistic (say S). For example, to test

HO: DF (distribution function) is N (p0, 1)

versus

H.: DFisN(pI, 1) p, >40J
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where N(Q, a 2) means normal with mean j and variance a

the text statistic is S - X, the sample mean, and the CRITICAL VALUE, may S*,

is

S*= *N- + z1./. Here Zl.,is the (1 -a)

quantile of the atandard normal distribution and n is the random sample size.

The sampling distribution Qf S - X is well tabled so that it is easy to obtain

S* - X* the critical value.

In many situations however the sampling distribution of S is analytically

intractable. For example consider the Weibull DF:

Fx(x) l-oxp (x/b)J , b, 6, x > 0,

- 0 elsewhere.

The sampling of the maximum likelihood estimate of c, say i, is intractable.

However, the sampling distribution of 8/c, while intractable has a distribution

free of b and c. Thus, the DF of 6/o could be obtained (indeed was obtained by

Thoman, Bain and Antle, 1969, Technometrics 11, 445-460) by Monte Carlo

methods. The Monte Carlo approach is quite expensive; involving some 10,000

to 50,000 V/cs for each n.

Z. W. Birnbaum ("Computers and Unconventional Test Statistics," 1974,

Reliability and Biometry, Edo.: F. Proschan and R. J. Serfling, SIAM, 441-458

and "Testing for Intervals of Increased Mortability," 1975, Reliability and Fault

Free Analysis, Edo.: Richard E. Barlow, Jerry B. Fussell and Nozer, D.

188

Now!



I'.I

Singpurwalla, SIAM 413-426) has proposed a remarkedly simple procedure in the

situation of testing

HO: DF of S- Go(s)

versus

H,: DF of So G,(s)

where G is analytically intractable. Blrnbaum' test avoids the expense of a large

Monte Carlo simulation. Here we will investigate the power of the Birnbaum

test (B. T.) in a variety of situations.

2.0 B. T. DESCRIPTION

We discuss in this section a right (upper) tall hypothesis test. Obvious modifica-

tions lead to left-tail and two-tail situations.

Let F(x, 6) be the distribution function for random variable X and let Sn be a

test statistic for 0, based on a sample of size n. Suppose 0 0(6n) and GIN)

are the distribution functions for Sn when 9 -0 and - 01 respectively. The

B.T. requires that, for all real Sn Gl() I G0 (%h). and for at least one S

Ga(#n)P(s(n). Suppose that a random sample of n observations, x1 , ... ,

is available which has been used to calculate a single value of Sn say s&*, and

we wish to choose between H0 :8 m00 and Hlt on 01 on the basis of this observation.

Birnbaum has shown that, if it is possible to obtain a random sequence of N

observations of Sn using only F(x, 80), a hypothesis test may be performed by

selecting a number, 0 <• Y . 1, and observing the number, M, of these N
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observations which are greater than with rejection .if and onl

Birnbaum shows that the size of his test is

(1 -i+ [NVJ)4 + N)

where [N'YV is the greatest integerS N Y.

In praoctoe, one performs a B. T. of exact size a as follows. Choose 0 < 7 .,1,

the size desired, and choose an integer N such that (N + 1) is a pesltlve integer.

Generate N observations of Sn under H0 and observe M/N, Reject H0 if MIN

3,.0 CASES INVESTIGATED

The advantage of the B. T. is that a knowledge of GO(@.), the sampling distribution

of Sn under H0 is not required. The N values of Sn may be genorated by Monte

Carlo methods directly from F(x, 00). The cost of the E. T. is a function of both

n and N, and may be substantial (although much cheaper than a "full" Monte

Carlo simulation of GO(sn))if calculation of sn must be performed by iterative

methods. Hence, it is important to know how the power of the B. T. varies with

n and N.

We have investigated the power of the BT, for test sizes a - 0.01, 0. 05 and

0.10: for sample sizes n - 5, 10, 20, and 50 and forN• - 9, 19, 39, 99, 199 and

499. It should be noted that, fora - 0,01, no B. T. exists with N - 9, 19, 39 and

for a - 0.05, no B.T. exists with N - 9. In fact, no B,T. of size a can be obtained

unless (N+ I)-' s a,
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We have restricted our investigation to maximum likelihood estimators (or

functions thereof) and to the following distributions Paid parameters.

a) Normal distribution - tests for the mean, 0 (known 0), with complete

samples, and tests for the niean (unknown a) with Type 11 censored samples.

b) The general class of tests for which S., has a chi-square distribution

This includes tests for a (known or unknown 0) in the normal distribution and

tests for the mean of a one-parameter exponential distribution.

4. 0 POWER OF THE BIRNBAUM TEST

Intuitively, it Is clear that letting N-. s is tantamount to obtaining the exact sam-

pling distribution of Sn: hence, the asymptotic power with respect to N should be

identical to the clashical power based on the same statistic.

The B. T. power under H1 is

1-(N) P(M/N~j H1 )

-0 jMO (N) ~G(~) ()~ 1 5~

fo (70 (1 - u)J uN'Jd J1 (u)

where Jl(u) - GI(0 1 (u)). Birnbaum has proven that

liM(1 - 3(N)) 1- J 1 4. -Y).
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It is easy to show that this is equal to the power of the classical test based on the

same test statistic.

"56.0 METHOD OF CALCULATIONS

A statistlcian is seldom interested in knowing the power of a test to even three

doecimal places. Clearly, the requirement of extreme aocuraoy in power deter-

mination increases the cost of computation. We have chosen to relax the accuracy

requirement so that more distributions and sample sizes could be studied.

AU of the results were obtained on a CDC Cyber-173 computer. Where power was

obtained by numerical integration, the trapezoid rule was used with 200 equal

intervals over the domain of integration. Where the limits of integration extended

to s.., the heuristic limits used were the 0, 0001 and 0. 9999 quantiles (&m3. 895, for

-' ',example, with the normal distribution). As a check on the numerical accuracy of

-* the integrations, both "tails" were evaluated. That is, we determined 1 - ( and

p separately. In every case, the sum of the two was in the domain (0.995, 1.005).

Where Monte Carlo methods were employed, the random number generating

algorithm was the multiplicative congruential method suggested by Knuth

using modulo 2 arguments. For the Monte Carlo simulations:

a) If it was necessary to determine classical power by simulation, 10, 000

observations of Sn when o-e0 were obtained and utilized to estimate the 0.90, 0.95,

and 0.99 quantiles of the distribution under H 0. Then 10, 000 observations of Sn

when o-we wore generated and compared with these quantiles.
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b) To determine the power of the B. T. by simu!%tiv,,, a single obJservation of

Sn (0G-1) was obtained and compared with N observations of Sn (0-90). The number

M of these N observations greater than Sn(9=81) was recorded, and if M N %

(o(N + 1) - 1)/•N, the null hypothesis was rejected. This complete procedure was

repeated 2500 times.

It appears that a B. T. using N-199 or greater could substitute for a classical

test on the mean of a normal distribution with virtually no loss in power. This

may give a practicing statician some confidence in using the B. T. for problems

where the distribution of Sn Is not obtainable, or obtainable only at great expense.nI
6.0 NORMAL USANS (KNOWN )

Of course, no one would ever use a B. T. in place of a Neyman-Pearson test for a

hypothesis about the mean of a normal distribution with known ov The p. d. f. of

Sn (i. e,, the sample mean) under both the null and alternative hypotheses and

hence the power, is known analytically. But such an artificial case is valuable

for studying the B. T. for precisely this reason. We may observe the relative

power of the B.T. in comparison to the classical test as a function of N, n, and

the classical power, to get a "feel" for the behavior of the B. T. as a function of

sample size.

2
Let X btj N(9, a). Wo chose as the null hypothesis N(0, 1) and as alternatives

e=0. 1, 0. 2, 0. 5, 1. 0, ant 2. 0. The power of the B. T. was obtained analytically

by numerical integration.
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Tha efficiency of the B.T. Relative to the classical test was remarkably high, even

for small N. Over the entire domain of samples sizes, n, the B. T. power was

never less than 85% of the classical power, For N - 199 and 499, the B. To power

was never loee than 95% of the classical power. An an example, for N -199, we

obtained:

n- 5 no 10

0-0.5 0-1.0 0-0.5 a 1.0

B.T. Power 0.29 0.71 0.46 0.93

Classical Power 0.300 0.723 0.475 0.935
n - 20 n w 50

B. T. Power 0.71 0.99 0.967 1.000

Classical Power 0,728 0,998 0.971 1. 000

7.0 NOgMTAL MEANS (UNKNOWN a) WITH CENSORED SAMPLEU

The classical power for hypothesis tests on normal means with the standard

deviation unknown, but constant, is available for complete random samples

through tables of the non-central t-distribution. Here, we examine Type II cen-

sored samples, where no such power distributions are available. Given a cen-

sored sample.

X, X . X*r) r < n.

'2 if 2the sample mean, P and standard deviation a - s (x(1 ) - ii) /r are calculated.

An auxiliary function A Is needed. The value of X depends only on r/n and on

- Ai ) X 2. The M. L. E. for 9 is n- x' -
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Hypothesis tests of the form H0o 0 -'0 vs,. H1: >00 were exatlned for the oases

(01 - 00)/M- 0.1, 0.2, 0. S, 1.0 with sampl., sizes 5, 1., 20, 50 ard censoring

at 0. 8n for n - 5, 10, 20 and at 0.4n for r, 10, 20, 50. Both the classical power

and B. T. power were obtained by Monte Corlo simulation, as described previously.

V. The B.T. with N - 199 or 499 will provide essentfl Ly equivalent to that of tho

classical test for all of the parameters and sample sizes examined.

8.0 THE CHI-SQUARE CASE

Many hypothesis testing situations involve test statistics which have a X distri-

bution, e. g., tests on the variance of a normal distribution (known or unknown

mean) and tests on the mean of an exponential distribution. The power of the

classical X 2 test is available in the literature from tables of the non-central

X2 distribution. But we have explored this case for the same reason that the

normal distribution was examined - the B. T. power may be obtained analytically

and its behavior with respect to N may lend credence to the assertion that the

B. T. is essentially as powerful as the classical test for a variety of probability

distributions.

Many hypothesis tests involving the X2 distribution are equivalent to

H d 2
A ~ 0 : "n X

d 2H 1. aSn d 2

Xm 

/

where S. is the test statistic, m is degrees of freedom and 0<&41 for a right-

tail test, a > 1 for a left-tall test. We examined right-tail tests for m - 5, 10,

20 and for a*2/3, 1/2, 1/3, 1/4. a 0.10, 0.05, 0.01.
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The B. T. power was remarkably close to the classical power, even for N = 9.

In fact, the smallest ratio of B. T. power to classioal power for all the combina-

tions investigated was 0.87. A ample of results for N X 199 and c a 0.05 is,

ms-5 ms-10
a 1/4 1io 1/2 2/3I 1/4 1/3 1I/2 2'/S

B.T. Power 0.72 0,59 0.34 0.19 0.91 0.80 0.51 0.27

Classical Power 0.736 0.695 0,354 0.104|0,918 0.807 0.518 0,272

m=20

a 1/4 i/a 1/2 2/3

B.T. Power 0.99 0.96 0.73 0.39

Classical Power 1.993 0,960 0.735 0.401

Hence, the X data support earlier conclusions that the B.T. with a reasonable

value for N, may 199, in essentially an powerful as a classical test.

9. 0 CO2NC LUSIONS

We have Investigated the power of the B. T. with respect -Lo the power of the cor-

responding classical test in a variety of situations. These situations included

rl complete and Type II censored samples forths commonly used test Sizes and

frequently used sample sizes.

et seems clear that the B. T. offers cost savings when the sampling distribution of

the test statistic is unknown and must be obtained by expenuive methods.
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In addition to the fact that the asymptotic power of the B. T., as N-. , 1s equal

to the power of the classlual test based on the same statistic, the B. T. has some

interesting characteristics, In all cases the relative power of the B. T. was quite

- lar'ge even for N as small as 9 and generally for N a199 the power was 95% of

the asymptotic power or greater. Also, generally, the relative power of the B. T.

increased as the alternate hypothesis got further away-from the null hypothesis.

Finally the B. T. relative power increased with N.
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4 ERROR-TIME RESPONSE PERFORMANCE OF NAIVE SUBJECTS

Michael Hacskaylo and Joseph E. Swistak
Night Vision and Electro-Optics Laboratory

Fort Belvoir, Virginia 22060

Abstract. An experiment was conducted In which the error and time
response performance for designating the angular location of a single
flash of light on a circular pattern of lights were measured. Fourteen
naive subjects were Instructed to record as accurately and rapidly as
possible the angular position of an activated light. They were allowed
only one attempt for each of six consecutive trials. The data are
presented In terms of mean time of each response per trial and mean
error per trial. The mean error, as a function of mean time, appears
to be bounded by an error-time response equation; E - -20.88 log(t/15.37),
where E Is the mean angular error In degrees and t is the mean time In
seconds. Surprisingly, the subjects responses as measured In either
time or error did not follow classical reaction time or learning patterns.
That Is, while time of response remained fairly consistent from. trial
to trial, the lowest error occurred on the first trial while maximum
error consistently occurred on the fourth trial. Based upon the six
trial limit used In the experiment, it is believed that the naive
subjects, first trial performance is the best for designating the
angular location of a single flash of light.

Introduction. The philosophy which tank crewmen have always adopted
has been "make your first shot count because you may not get a second
chance." This philosophy has become more acute with the recent advent
of "SMART" weaponF which ride beams of light to a target. A system was
designed which would allow tank crewmen to detect and radially demarcate
the source of designation by a coherent light source. The system is
designed to operate by having a tank crewman observe a circular array
of lights on a panel. When the tank is Illuminated by a laser beam,
a corresponding azimuthal light Is activated. The crewman would Interpret
and record the azimuthal position for appropriate tank action. The
effectiveness of the crew would depend upon (1) the speed and accuracy
with which the azimuth is read oLt, and (2) the panel configuration used
to d'splay the azimuthal Information. The panel used in this experiment
was designed from a technical consideration based on the circular
representation of equally spaced light bulbs (Fitts and Seeger, 1953).

Method.

Subjects. Fourteen U. S. Army enlisted men of various ranks were
randomly selected from a large group of individuals to serve as subjects.
None had prior training in tanks or tank related equipment and none had
prior experience with the display panel being tested. The fourteen subjects
were then randomly assigned to one of two groups comprised of seven subjects
each.
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Apparatus. The stimulus display panel consisted of a 9cm diameter

ring of6 equally spaced light bulbs. This panel, portrayed In Figure 1,
was positioned on the front panel of a box 20cm long, 10cm high and 5cm
deep. The light bulbs were angularly marked from zero to 360 In ten
degree Increments In a clockwise direction with zero at the top.

Responses were recorded on a response panel. This consisted of a
12cm circle drawn on a 20x25cm sheet of plain paper. The circle was
divided Into quadrants and marked Into degrees as follows. Zero degrees
(00) was marked at the top. In a clockwise direction, each quadrant

was successively marked 900, 180*1 270*, and again at the top, 3600.
A pencil was used for marking angular positions with an "X" on the circle.

Procedure. Each subject was briefed Individually prior to his
participation in the experiment. They ware brought into a room which
contained the stimulus display panel, a bench, chair and associated
equipment required to act lvate the lights of the panel. Each subject
was briefed as followst

"As accurately and as rapidly as possible, determino the angular
location of a light when It comes on and mark with an "X", that position
on the circle on the sheet of paper In front of you. The sheet of paper was
referred to as the response panel for purposes of the study. Each subject
was allowed two famllarlzation trials to be sure they understood the
instructions. Each subject was then given six trials. The sequence of
lights for trials one to six are presented In Figure 2.

. FIGURE 1. 20 REPRESENTATION OF STIMULUS
*PANEL COMPRISED OF 3 LI0 m

* 0
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Each subject saw this same sequence. A new response panel was supplied
for each trial. The time Interval fromn when the light came an to when
the subject marked the panel was measured by a stop watch to 0.01 seconds.
The stop watch was controlled by the experimenter and it was assumed
that th. reaction time error Introduced was fairly constant.I

Upon completion of *a set of six trials, the subject was dismissed.
The subjects tested vecsus those not tested were kept In Separate rooms
until all seven subjects In a group were finished. One, roup (A) of
seven subjects was tested on one day, the other group (11of seven
subjects was tested on the following day. soe

Teangular positions marked on the response panels were soe
In degrees by using a transparent templa~te graduated to 0.5 degrees and
superimposed on the marked response panel. The accuracy of the marked
position was then measured to + 0.5 degrees which was the resolution
of the scoring 'template.

Results and Discussion.

The mean time of response for each trial are presented In Figure 3.

U-~

FIGURE 3. MEAN RESPONSE TIME TO DESIGNAll ANGUIAR LOCATION
OF A FM.S OF U0GHr ON SIX CONSECUTvE TRimS
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These mean times and associated standard deviations are presented In
Table 1. In general, It appears that the mean time to respond did not
vary significantly over the six trials. There does appear to be a gradual
decrease In response time from trial one to trial five, but an Increase
on trial six. There was no readily obvious reason for this Increase
on the sixth trial, I.e., no subject took an Inordinate amount of time
It would also seem that fatique could not be a factor with only six
"trials having elapsed.

TRIAL NO. I 2 3 4 5 6

MEAN TIME (SEC) 3.79 3.94 3.21 3.34 2.60 3.32

STANDARD DEVIATION 1.41 2.03 1.31' 1.9 1.00 1.2

TABLE 1. MEAN TIME AND RELATED STANDARD DEVIATION REQUIRED
TO DETECT AND DESIGNATE THE ANGULAR LOCATION OF A
LIUGHT FLASHED WITHIN A 360* ARRAY OF LIGHTS ON SIX
CONSECUTIVE TRIALS.

The mean error In degrees for each trial are presented In Figure 4.
The numerical values and associated standard deviations are presented in
Table 2. Trial one had the smal lest angular error. The, amount of error

iN
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then Increased with the greatest error occurring on the fourth trial,
after which, the error decreased. The error on the sixth trial was
very near the error on the first trial. A large part of the error
on trial four can be attributed to the performance of two subjects who had

1teAL NO. 1 2 3 4 1 1

MEAN ERROR (MEGREE) 715 Il.i I. 25u i. U

STANARDOD V1ATION U U U 21.5 1M02 U

TABLE 2. MEAN ERROR AND RELATED STANDARD ODVIATION AMSOCIATED
Wil1THEM ANGULAR DETECTION AND DESIGNATION OF A LIHIT
FLASHED WITHIN A 360 ARRAY OFI UGHTS ON SIX CONSECUTIVE
TRIALL

errors of 9I4,J and 68.0 degrees, on that trial. However, even with these
two values removed from the date, the mean degrees of error for trial
four remains at 16.2. If this level of error Is the more accurate, then
It can be said that the third and fourth trials were the worst In terms
of performance, and the dotted portion of Figure 4 would more aptly
represent the performance on this task. The mean error, as a function
of mean time, (Figure 5) appears to be bounded by an error-time response
equation: E *-20.88 log(t/IS.37), where E is the mean time In seconds..
This curve provides somewhat of an upward estimate of angular error given
an elapsed period of time for a response - the greater the time, the lower
the error.

au
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lHowever, regardless of which curve In Figure 4 most accurately
represent the performance which could be expected on the task described
In this study, It is Interesting to note that neither set of date
follows the expected learning pattern described In learning literature.
Normally, one could expect accuracy to be poorest on the first trial,
rapidly Improve on the next few trials and then continue to Improve
at a slower rate until some maximum level was reached. The nuudsr of
trials required for asymptotic performance to occur would depend upon
the degree of difficulty of the task. The present task should have
required 6-8 trials. It appears that asymptotic performance was being

C! approached on the slxth trial, but what Is truly Interesting Is that
the performance on the first trial was actually better than on the sixth.

In terms of an untrained subject being able to determine angular
direction of designation, the first attempt he made would be the most
accurate of his Initial six attempts.

The conclusion of this study must be that the Initial attempt
by an untrained gunner would be at least as accurate as one who Is
starting to asymptote.

References

FItts, P. M. and Seeger, C. N., S-f Compatibillty: Spatial Characteristics
of Stimulus and Response Codes, J. Experimental Psychology, 1953, 4L6,
199-210.-

204

./



I:i

IMAGE INTERPRETATION PERFORMANCE

ON FOUR STANDARD TYPES OF AEROGRAPHIC FILM

RONALD L. JOHNSON and PAUL J. SCHOOL

US Army Mobility Equipment Research and
Development Command, Ft. Belvoir, Virginia

ABSTRACT

This study involved trained operational image Interpreters who
analyzed highly controlled aerial imagery from which the effects of
type of film upon target detection were determined. One-hundred-and-
one operational image interpreters generated the following mean target
detection probabilities: Color Infrared - 58.6%. Color - 55.4%.
Panchromatic - 44.7%, and Black and White Infrared - 43.4%. At the
0.05 significance level, target detections were affected by film type
as follows: Color Infrared differed signifigantly from both Panchro-
matic and Black and White Infrared films. Color differed from Black
and White Infrared. The combined mean of target detection for Color
Infrared and Color differed significantly (0.01 level) from the combined
mean for Panchromatic and Black and White Infrared. Therefore, use of
Color and Color Infrared imagery results is significantly more accurate
day image interpretation.
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1.0 INTRODUCTION

The purpose of this study was to quantitatively determine the target
acquisition capabilities by image interpreters (II) of the following film
types: Aerochrome MS 2448 (Color), Aerochrome Infrared 2443 (Color Infrared),
Plus X Panchromatic 2042 (Black and White), and Infrared Aerographic 2424
(Black and White Infrared). Image interpretation is defined 1/ as the
examination of images of objects on film for the purpose of identifying
the objects and deducing their significance.

Approximately 90 percent of the intelligence gathered in World War IIU was derived from aerial photography. The requirement for accurate imagery
intelligence is escalating as weapon systems and tactics develop and become
more refined. To obtain this information, it is becoming increasingly more
common to use color, color infrared, and black and white infrared film.

U Strandberg 2/ states " color aerial photography offers much promise in the
gathering of imagery intelligence, because humans have the capability of dis-
criminating between an almost infinite number of different colors, but at most,
only a few hundred different shades of gray".

2.0 TEST SITE

An 820 acre site was splected. This site is used for equipment
evaluation by the US Army. Military equipment and camouflage devices
such as nets were randomly located throughout the study area. The
soil contained a high moisture content and the color was reddish-tan, The
brush was gray and brown In color. Included within this site were building
complexes, open fields, dense woodo, and clumps of green grass. The
forest composition was a mixture of oak and pine.

3.0 TEST IMAGERY

Photographic images consisted of a 13 frame series of 9" X 9" positives
taken with 60% forward overlap. One frame series was acquired for each
of the four standard types of aerial film. Film and filter characteristics
are summarized in Table 1.
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TABLE 1

FILM CHARACTERISTICS

RESOLVING SPECTRAL RESULTANT
POWER (T.O.C.)* SENSITIVITY FILTER SPECTRAL

FILM TYPE 1000:1 1.6:1 RANGE (NM) CUT-OFF SENSITIVTY (NM)

Plus X
Panchromatic 100 50 250-700 Zeiss Yellow 490-700
2042 490 NM
(Black &

White)

Infrared
Aerographic 80 40 Zeiss Orange 550-900
2424 400-900 550 NM
(Black

& White)

Aerochrome
MS 2448 80 40 400-700 7eiss Clear 400-700
(Color) Activig

No} cu~t off

Aerochrome 63 32 400-900 Zeiss Orange 550-900
Infrared 550-NM
2443
(Color)
*Target Object Lontract

A KC-4B camera system with a 6 inch focal length lens was used. In all
cases except black and white infrared film, standard film/filter combinations
were employed. A zelss orange filter was used with the black and white
infrared film instead of a red filter; to increase the spectral response,
and therefore, the information content of this film type. All imagery was
jathered during four overflights (one per film type) at an altitude of 1500
feet above ground between the hours of 1100 and 1400. Therefore, the sun
angle effect was negligible. The photographs were taken in February, ard the
weather was clear and sunny. Each 9 inch photograph covered a land area
of approximately 124 acres. The total number of targets present oi detected
for each strip of imagery were determined by three senior image interpreters.
They performed detailed and exhaustive analysis upon the imagery. The
results of which are presented in Table 2.
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TABLE 2

TOTAL MILITARY TARGETS DETECTED FOR EACH TYPE OF FILM

FILM TYPE NUMBER OF TARGETS

Plus X Panchromatic 2042
(Black and White) 46

Infrared Aerographic 2424 50
(Black and White)

Aeochrome MS 2448 44
(Color)

Aerochrome Infrared 2443 47
(Color)

Variations in the number of targets detected between film types
(ground truth) are not significant. They were apparently due to slightly
different flight lines flown by the photgraphic aircraft.

4.0 METHODS OF PROCEDURE

The Pseudo-Isochromatic Plates for Testing Color Perception, developed
by the American Optical Corporation, were given to each II in order to
insure that the interpreters were not color deficient. A total of 101
operational US Marine Corps image interpreters participated in this study.
The participants were randomly divided into four Iroups, one group for
each type of film. The assumption was made that the four groups, due to
the Central Limit Theorem, contained interpreters of equal ability. Each
II was instructed to perform detailed image analysis to detect military
targets such as Jeeps, trucks, etc., and was allotted 45 minutes to analyze
a selected film strip. Each II viewed only one strip of film, and
consequently only one film type.

5.0 RESULTS

The percentage of military targets detected by the image interpreters
with the associated standard deviations, 95% confidence intervals, and

sample sizes are presented in Table 3.
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TABLE 3

STATISTICAL SUMMARY FOR MEAN PERCENTAGE OF TARGETS DETECTED BY FILM TYPE

FILM TYPE MEAN PERCENTAGE STANDARD 95% CONFIDENCE SAMPLE SIZE
OF TARGETS DEVIATION LEVEL (# of observers)

DETECTED
Lower Upper

Plus XPanchromatic ,•~
2042 44.7 16.2 38.1 51.2 26

(Black &
White) __._

Infrared
Aerographic
2424 (Black 43.4 18.4 35.9 50.8 26
& White)

Aerochrome
MS 2448
(Color) 55.4 22.2 46.1 64.8 24

Aerochrome
Infrared 2443
(Color) 58.6 17.6 51.4 65.9 25

An analysis-of-variance 4/ of the mean values shown in Table 3 was
performed and the results are presented in Table 4.
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TABLE 4
ONE WAY ANALYSIS-OF-VARIANCE FOR MEAN PERCENTAGE OF TARGETS DETECTED

FROM FOUR TYPES OF AERIAL FILM
'SUM OF DEGREES OF

SOURCE OF VARIATION SQUARES FREEDOM MEAN SQUARE F-RATIO

Tpes of Aerial Film 4,428.,864 3 1,476.2955 *4.2351
ithin Types of
ertal• Film, ,. 33,812.6291 97 348.5838•Total 38,412.5125 100

Critical F
* 0.05, 3, 97 - 3.27

The data presented in Table 4 revealed significant effects between the mean
percentages of targets detected and the type of aortal film. The degree of
this relationship was determined by individual conparison employing the t
statistic. These results are presented in Table 5.

TABLE 5

INDIVIDUAL COMPARISONS UPON THE MEAN PERCENTAGES OF TARGETS DETECTED

Plus X
Panchro- Degrees Infrared Degrees Aerochrome Degrees Aerochrome Degrees

c of oahic of MS of Infrared of/...L Freedom 2424 B/W Freedom 2448 Color. Freedom _4W1 Cnlnr _Ftedm

Plus X
Panchro-
matic 2042
B/W

Infrared
Aerographic
2424 B/W 0.279 51

erochrome
S 2448

Color 1.938 43 2.0085* 46

erc' :h rome
43Color 2.932* so 3.028* 50 0.55345
Critical v lue for gnlficance: U0.05,14 -. 17 ; ,05,45 2.15; 60.05,4 2.01i4;
t0.05,50 = 2.010; *.05,51 n 2.009.Indicates significance < 0.05 level.
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The data In Table 5 indicates that at the significance level a- 0.05,
the mean detection of targets on the Color and Color Infrared film, was
greater when compared to the mean detection of targets in the Black
and White Infrared film type. The mean detection of targets by Image
interpreters on color infrared film was also significantly greater
(< 0.05) when comipared with the mean detection of targets on Panchro-
matic film. An even more significant relationship (a - 0.01) wms 'Jtnd
when the means of the Color and Color Infrared films were combined ard
compared with the combined means of the Panchromatic and Black and Wh4 te
Infrared. Table 6 contains the means for the number of targets detected,
as well as the 95% confidence intervals and-sample size. Table 7 contains
the results of the analysis-of variance performed on the data of Table 6.

6.0 DISCUSSION

From these results, and assuming the interpreters to be of equdi
experience levels, it was statistically (a w 0.05) determined that
the use of Aerochrome Infrared 2443 film resulted in e greater mean
percentage of target detections than that of either Plus X Panchromatic
2042 or Infrared Aerographic 2424. Aerochrome MS 2448 film also allowed
statistically (a a 0.05) greater mean number of targets detected than that
of Infrared Aerographic 2424. The mean number of targets detected was
combined for the two color films and also for the two black and white films.
They were then statistically compared against each other; it was determined
that they differed at the 0.01 level. The task involved in this study
was basically one of searching an unknown area of film for the detection
of military targets, some of which were embeded in trees. The resulting
mean percentage for target detection on color films complements some of
the conclusions of a US Naval Technical Bulletin 5/ which states that
color photograph provides the most benefits in a area being searched for
unknown or unlocated targets. The bulletin also states that the detect-
ino of partially hidden targets is aided by the use of color imagery which
provides details within the shadows. Strandberg stated that atmospheric
haze reduces the advantages of color film over black and white when high
obliques or horizon-to-horizon panoramics are -taken. Therefore, both color
and black and white imagery may be required. It is interesting to note
that 64% of the image interpreters who analyzed the Aerochrome Infrared
2443 film stated that, with the exception of a brief session in school,
they have not had further experience with it. Forty-two percent of the
image interpreters made a similar statement concerning the use of color
film. Accordingly, it may be that given additional experience with these
films, the mean percentage of targets detected would show an even greater
disparity between color and black and white aerial film than the results
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TABLE 6

STATISTICAL SUMMARY FOR PERCENTAGE OF TARGETS DETECTED FROM THE COMBUIED
MEANS OF CaLOR AND BLACK AND WHITE AERIAL FiLN,

Mean Percentage -95% Confdence interval Standard Sample
Film Type. of Target Detected Lower Upper Deviation Size

Combined
Color 57.1 50.5 63.6 19.8 49

Combined
Black &
White 44.0 38.5 49.5 17.2 52

Table 1, below, contains the results of the analysis-of-variance performed

in the data of Table 6.

TABLE 7

ONE WAY ANALYSIS-OF-VARIANCE FOR PERCENTAGE OF TARGETS DETECTED FROM THE
COMBINED MEANS OF COLOR AND BLACK AND WHITE AERIAL FILM

Source Sums of Degrees of Mean
Squares Freedom , Square _ .._ _

Between Combined
Color and Combined
Black and White FIl 4,282.065 1 4282.0657 12.4833*

Within Types of
Aerial Film 33,959.4467 99 343.0247

Total 38,241.512 100

Critical Value: F r01,1,99 " 8.29

* Indicates significance < 0.01 level
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obtained from this study. Therefore, the quality of day imagery Intelli-
gency should increase with the increased use of Aerochrome MS 2448 and
Aerochrome Infrared 2443 film by image interpreters. The use of Infrared
Aerochrome 2424 film for gathering of day imagery intelligence is not
Justified by the results of this study. Should Aerochrome Infrared 2443
not be available, or night photography using artificial light sources is
desired, Infrared Aerographic 2424 film may be of value.

7.0 SUMMARY

We quantitatively compared the target detection capabilities of 101,
US Marine trained, operational II's. They analyzed the same targets
photographed with the following four types of film:

Aerochrome MS 2448
Aerochrome Infrared 2443
Infrared Aerographic 2424Plus X Panchromatic 2042

We found:

a. Aerochrome infrared images resulted in significantly greater
(c*< 0.05) mean percentages of targets detected than Plus X Panchromatic
anU Infrared aerographic images.

b. The mean percentage of targets detected with aerochrome
images was significantly ( < 0.05) greater than that of the Infrared
Aerographic film.

c. rhe combined mean number of targets detected with image types
Aerochrome MS and Aerochrome Infrared was significantly ( an 0.01) greater
than that of the combined mean number of targets detected from Plus X
Panchromatic and Infrared Aerographic imagery.

From the above results it is concluded that the accuracy of day
imagery Intelligence will Increase with usage of Aerochrome VS and Aero-
chrome Infrared imagery by II's.
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NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES
AND BAYESIAN PARAMETER ESTIMATION

Warren S. Stewart and Jan P. Sorensen
Chemical Engineering Department
and Mathematics Research Center

University of Wisconsin
Madison, Wisconsin 53706

New algorithms are described for Bayesian estimation of parameters in

nonlinear models of multiple-response systems. Modal and interval estimates

are provided for the parameter vector Q of the predictor model, and for the

variance-covariance matrix a of a Normal error distribution. Allowance is

made for gaps (missing values of responses), such as commonly occur in

practice. Two chemical examples are analyzed.

INTRODUCTION

Realistic models of multivariate phenomena often relate several predicted

responses to a common set of parameters. Multiresponse experiments are re-

quired to establish such models, but frequently yield irregular data which

are difficult to analyze by classical methods.

Bayes' theorem is a good starting point for parameter estimation in these

situations. The multivariate error distribution can be estimated concurrently,

whereas it has to be prescribed when least-squares methods are used. Thus,

the Bayesian approach allows more objective parameter estimates, if sufficient

data are provided. An excellent general account of this approach is given by

Box and Tiao (1973).

Bayesian inference deals with a data array {yu y, a model for E(y)

w;ith parameter vector 6 , and an error distribution model. If a Normal error

model is used, with variance-covariance matrix a , the unknown elements of

o will appear am additional parametfrs. The full set of parameters can be

S. 5......... . . . .. . .



estimated optimally by maximizing the posterior density p(6,aly), confidence

regions can also be calculated from this function.

In certain cases, the posterior density can be integrated analytically

to obtain the marginal density p(QO). Box and Draper (1965) accomplished

this for multivariate Normal error distributions and rectangular data structures

(Table la). For block-rectangular structures (Table lb), p(01 ) is the prod-

uct of the Box-Draper densities for the individual rectangles. More compli-

cated data structures often occur, however, such as that in Table lo, for

which p(•6j) cannot be expressed in closed form. Therefore, in this paper

wo use the full posterior density p(e,5Iy), which has a closed form for any

finite data structure.

Inspection of the parameter estimates and residuals often suggests

alternatives to the postulated model. Therefore, parameter estimation should

not be viewed a. an end in itself, but should be followed by critical examina-

tion of the model and investigation of any promising alternatives. Interesting

predictions or unresolved differences between models will naturally lead to

further experiments.
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PROBLEM FORMULATION

Consider a set of independent experiments, u - l,..,n, in which a

table (yui I of observed responses have been obtained at known settings

{x ) of the independent variables. There are m linearly independent

kinds of observationsj thus the index i ranges from 1 to m , but in

each experiment some values may be missing as in Tables lb and lo.

The observations in the uth experiment are regarded as a sample from

a population of the form
Yui" •(x e) + , (i

The function. f (xu,8) are models for the expected responses E(yui).i-

The residuals cui in the uth experiment are treated as a random sample

from an m-variate Normal distributions this gives the probability density

(Wilks, 1962) -M " /2 1-1/2 T a-l
(e I C) -(2 it) I 12 eXP(-i LTc 1

-- u~ (2)' Here &u is the column vector of error variables c ul,...,Cum with dumamy

zeroes inserted where observations are missing. Correipondingly, Z. iS

obtained from the full variance-covariance matrix, a - {a•i } by sub-

stituting dummy elements 6iS whenever observation yuj or Yuj in

missing. Here 6iJ is unity when i-iJ, and zero otherwise.

The joint error density model for the set of n experiments follows

directly from Equation (2)1
in /2u i1/2 T -1iP(ele,a). - " R.l (2 T) u I1u exp(-J. eu a-u e (3)

"Insertion of Equation (1) gives the corresponding density in observation

space:
n -mu/2

u-i .u (4)

- I I y -f (0)y f (8)1}.
u-i-l J1i U ui ui- uj uj-
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Here the functions fu(6) stand for fi (',u0) evaluated at the known
settings x of the independent variables. The a j are the elements of

u U
the precision matrices O The right-hand term may also be regarded,

by Bayes' theoreom as the likelihood function for 0 and a when eval-

uated with given observations y

The usual factorizatioiý o" the prior density p(O,Z) is assumed,

p(C,•) - p(q) p(o) (5)

and a locally uniform density p(O) is assumed in the region of appreci-,

able likelihood. The latter assumption requires some care in the parame-

trization of the model. The prior density of a is taken from Box and

Draper (1965) 1

.P(a) *i�'�"V(m+l)/ 2  (6)

Bayeo' theorem then given the posterior donsity

-(,2y p(Qg) p(lo',l)
- 0ej(m+l)/ 2 [ I 1"/2] (7)

~ u- i •

e~(j ijtyu - f (Offly -f ((Mf)
- uuinlimluinl ui ui - uj uJ

* Iin which c is a proportionality constant. All that the data reveal about

the parameters 0 and a is contained in this density function.

Point estimates of 0 and a are obtainable by maximizing the posterior

density just described, or by minimiuing the function

s(t) -s(O,a) - -2 In p(8,cly) + 2 in c

- (m+l) In IJUf + uI in I(Y• (a)

n m m
+ Iy -f ()HY -• f (e)]

u-i- il Jl u ui ui uj uj

over the permitted region of e and a . Here t is a column array of

the model parameters 0., ... ,o and the independent elements of C
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The letter are taken from the lower triangle of a in row order, iL.

a with i > j and k - j + i(i-l)/2. Thus, the total number

of parameters in q , p + m(m+l)/2.

If the matrix g were believed to be known, i.e., if a sharply focussed

prior density p(q) were aseumed, then S(*) would reduce to S(O) and we

would have a least-squares estimation problem with just p parameters. In

practice, one seldom knows o aoouratelyl hence, the full Bayesian solution

1I

is recommended.

iii
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PARAMETER ESTIMATION ALGORITHMS

Several algorithms are described here for obtaining summary informa-

tion from Equation (8). These algorithms are part of a Fortran IV package

available from the authors.

1. Counting Algorithm

Before analyzing S we count Equations (1) to see which parameters

can plausibly be estimated from the data. We first try to match each

parameter akj in J with an observation pair (uyu ) of a weplicate

experiment (i.e., an experiment whiuh has the same expected response values

as a prior experiment in the data set). if this process cannot be completed

for a given k , we then try to match each remaining erzor parameter o1

and each model parameter 0r in the function pairs f(uk), ft (0e)], with

a non-replicate observation pair (yuk'yu'). Finally, any remaining model

parameters e r are matched with remaining non-replicate observations. If

the matching can be completed for all elements of J , we proceed with the

estimation. Otherwise, the fullsot of parameters cannot be estimated from

the data.

The counting algorithm is a logical Gaussian elimination. This test

is a useful diagnostic, but is not infallible, since the actual rank of the

estimation equations depends on the numerical values of x, y, and (i.

2. Min.l mization Algorithm

A modified Newton method is used to find a minimum of S(*). Let

be the value of t at the start of an iteration. A correction vector

(•- %) is computed by minimizing the local quadratic expansion (see

Appendix A for derivative e.pressions)

6 0 + T 82S
ý- 5(o) + 0 o - " (" - °p) . ('p " •°) (9)
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over a user-specified rectangular region around *0 The region is chosen

small enough to ensure that Si() is a good approximation to the function

S(t) of Equation (9). A search in then made for a minimum of S in the

interval of positive definite a on the line from *0 through i this

gives the starting point for the next iteration. The calculation continues

until two successive line-minima agree within confidence intervals calculated

from Equation (14) for each paxameter.

3. Response-Independence Test

Box and co-workers (1973) have pointed out the need to test the responses

for linear independence. Preferably, one should perform this test on the

residuals -u f r(0 1), which might become linearly dependent in certain

regions of e . In the present procedure, such linear dependence is readily

detected during the inversion of a at the start of each iteration. The

calculation can continue if all pivot elements (Stewart, 1973) found in this

inversion are greater than a specified fraction, say 0.1, of the corresponding

elements v

4. Confidence Regions

Equation (8) gives the simple form

p(•ty) - expt-i S(i)] (10)

for the posterior denmity function, or "confidence density". Use of Equation

(9) gives the approximation

00~y) aexp(-J(4ý-~T~-q),(1

valid in the neighborhood of the minimum point , . Here A is the qxq

matrix (positive definite since S is at a minimum) with elements

A 2
A a S(12)km qkm
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computed as described in the Appendix. Thus, near the optimum, the param-

Otero are Normally distributed with variance-covariance matrix -i f

Equation (.1) is used as an approximation for all values of • , then the

confidence intervals for Normal distributions can be applied. For example,

the ellipsoidal region
. T < 2(q,) (13)

roughly approximates the 100(1 - a) percent highest-posterior-density region,

or joint confidence region, for i based on the given data. The intervals

((*k" ) efo-1 (14)

roughly approximate the 100(l - a) percent confidence intervals for the indi-

vidual parameters. For symmetric 95 percent confidence intervals (a w 0.05), J
erfc 1(a) has the value 1.96.

Equatior, (14) is more reliable than (13), since the integration used to

obtain it is less affected by the tails of the posterior density function.

More accurate intervals can be obtained, but with greater effort, by numerical

integration of Equation (7) or (10).
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RESULTS FOR RECTANGULAR DATA STRUCTURES

If every experiment gives a full set of observations yUlf"P'Mu '

then Equation (7) takes the form
m m !

p(ealy) - , e"1xn+l)/2 .,p[-i E E a v (0)] (15)

in which
-j n

v .(O) *l " fu- (0)1CY f (8)] . (16)

u- i uii uj uj.u-1

Integration of Equation (15) over the region of positive definite a given

the marginal density function

'P~ey) l~e),n/2(17)

as shown by Box and Draper (1965). We wish to compare the estimaten based

on this function with those obtained from the full density function of

Equation (15).

Setting p(ely) stationary with respect to its parameters gives

8 in v(e)l Iav
- .- = v -~ 0 i 1,...,p (18)•k i j k

when use is made of the Laplace expansion of iv + dvi. Here the vij are

the elements of the matrix v -1

Setting p(e,aly) stationary with respect to its parameters gives, after

use of Equation (15),

D in p(e,oly) _v..(8(

-2 -B oil• . - k -r-...p (19)
k i j k

a-2 i In P(8,aly)
-2!' (m+n+l) (n Jul)+ ( v ()

ac s 8a r gars i j K

S(2 6 )[-(m+r+l) a + v (2)) - 0 (20)
re re ri-

r - leo...m s l,.,.,r

223



Insertion of Equation (22) into (19) gives Equation (18) at the stationaryIpoint of p~e,aly). Hence, for rectangular data structures, the same values
of 8 and 0 are obtained whether one maximizes p(G~l)o (Iy).

:y:atio (20) gives, at the stationary point, K I' 5  
T !~ (1

Of course, the marginal confidence regions for 0 can be estimated more

directly in the latter case. The normal equations based on peygiven

by Stewart and S~rensen (1976), are convenient for this purpose.
The cavariance estimates in Equation (21) are maximum-density value=,

and thus differ from the expectation •ausEom[ nesnmpis

very large. Zf expectation estimates of the u are desired, one can com-

pute them as the corresponding moments of the normalized posterior density

p(Hacy).

EXAM4PLE 1. Kinetics of a Three-Component System
Consider the chemical conversion of initially pure species 1 to species

2 and 3 in a batch isothermal reactor. Simulated data for the system are

given in Table 1, reproduced from Bo and Dmaper (1965); here or is the

yield of species i in experiment u * The system is modelled by the differ-

ential equations

df1
"--- kl fl

df 2
-i kI fl "k2 f2

d1f 3

II-i-nk2 f2
which have the solution

• 2 2 h~
'/
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fl exp(-kl t)

f 2 • exp(-kI t) - exp(-k 2 t)]k,/(k 2 - kI)

f3 1 - fl " f2
f3  if 1  ~2

under the indicated initial conditions. As noted by Box and Draper, it is

natural to regard the parameters e m In as uniformly distributed a priori.

There are three responses yui per experiment. Oirly tv-io wrould be linearly

independent if the yields were mass-balanced (i.e., if the yields in each row

added up to unity). The data in Table 2 are clearly not mzt-balanced, so we use

all three columns of responses.

The repli,:ates An Table 2 allow preliminary estimation of the parameterti

a• by the relation
n R

ij - -2n ri yr'i rj ri

Here yri and yi are the observations of response i in the first and

second tests of replicate pair r , and n is the number of much pairs.

This procedure gives

0,00102 -O.u0128 0.00025

asij - -0.00128 0.00351 0.00024

0.00025 0.00024 0.00101

as a preliminary expectation estimate of G . This is a well-conditioned

matrix, so our choice m - 3 was correct.

The parameter -vector • for the present example co,,sists of 8V e2 ,

and the six elements on and below the diagonal of a . To test the conver-

gence of the estimation from a poor initial guess, the calculation was started

from the initial valun shown in Table 3. Convergence was obtained in eight

iterations, to the point estimates and 95 percent confidence intervals given

there.
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A second calculation was made with the same initial values, but with

second-order e-derivatives neglected. Convergence was obtained to the same

point estimates in nine iterations. The confidence intervals differed

slightly, as shown in Table 3.

A third calculation was made by minimizing the determinant !v(e)I. Box

and Draper (1965) did this by a search procedurej we uand the modified Newton

algorithm of Stewart and Sorensen (1976), but neglected the second-order e-
derivatives of the functions f (6) . Convergence was obtained in seven

ite,:ations, to the same point estimates . The point estimates for the

0j ,uomputei from Equation (21), also agrc:d exactly with the two preceding

solutions, The one-parameter confidence intervals (computed in this case only

for 61 a-id 6 ) are wider than before, and are considered more accurate1 2

since in this case the oij have been integrated out exactly (Box and'Draper,

1965).

EXAMPLE 2. Kinetics of a Five-Component System

Fuguitt and Hawkins (1945, 1947) did extensive experiments on the liquid-

phase thermal reactions of a-pinene and its denomposition products. The

following products, in order of boiling point, were identified.

A. c-Pinene C1OH16

B. a - and O-Pyronene C H

C. Dipentene Co1 0 H 1 6

D. allo-Ocimene Co10 H 3.6

E. Dimer C2 0 H3 2

The reaction conditions and yields are reported in Table 4.

We have normalized the yields to obtain exact mass balances; this makes

the yields linearly dependent, and accordingly we have omitted species D .

The remaining species are grouped as cuimulative distillation fractions:
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A, A+B, A+B+C, and E. Each of these responses represents essentially the total

mass fraction distilling above or below a particular temperature. The yields

of B originally reported in tests 1-15 have been deleted, since they were

interpolated values rather than observations (Fuguitt and Hawkins, 19471 Box
'II

* and co-workers, 1973).

There are numerous gays in the data. a-Pinene (M) was reported in experi-

ments 1-16, but was considered negligible in the remaining experiments. Pyronenes

(B) were reported only in experiments 16-311 they proved difficult to isolate

except at small concentrations of ac-pinene. Only the dimer fraction (E) was

reported in the experiments with allo-ocimene (D) or dimer (E) as food. The

simplified reaction scheme proposed by Fuguitt and Hawkins (1947) implies that

-t-pinene (A) and dipentene (C) would not be formed in the latter experiments,

but that the other three species would be present.

The first eight experiments were used for parameter estimation according

to Equation (17) with m - 3 by Box and co-workers (1973), and by the present

authors (1976). The full 41 experiments could not be so analyzed because of

their irregular structure; therefore, only rough estimates were obtainable for

several of the reaction parameters. with Equation (8), on the other hand, all

41 experiments can be analyzed.

We postulate the following reaction scheme,

A-* C

k2

/k k
-4 -3

-- i.;k _4 k_ 3
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with the following diffezential equations for the concentrations;

doA ( + k ) A - 2k5  2~

do'

d" _k_ -3 - + +k 3 ýD
do c

do 02d•dt k2 A +-3 •B " 3 D "24 -D÷ k4 ý

, 2 2
d- 5 A + k4  D k 4 OE

Here we have assumed equal densities for the reaction mixture and all specieso.

The oi are molar concentrations relative to the molar density of pure liquid

a-pinease at the reaction temperature. The resulting initial oi values for the

pure reactants area 1.0 for c-pinene, 1.0 for allo-ocimene, and 0.5 for

dimer. The rate coefficients are represented as .arhenius functions,

in (ki) - 8 - (I/T - l/T 5 ) 8+5 ± - l,...,5

In (k /k) -911 /TB + (1/T - l/TB)61

in (k4 /k 4 ) - -'12/TB + (l/T - i/TB) e14

with ki value. in min- I T in Kelvins, and a base temperature TB of

478.5 K.

The data and parameters were paired to check the feasibility of the

estimation. This indicated a sufficient amount of data for estimation of all

parameters except a21 . However, the replicate comp)arisons (u - 18-19,20-21,

22-23,24-25) involving yu2 all give duplication of yu31 furthermore each of

these comparisons givcs a duplication of either yu2 or yu4' With these

results, we find that neither u 2 nor 042 can be estimated; inieed, an

attempt to estimate them was terminated by the linear independence test

described above. Thereafter, a211 '32' and 042 were all fixed at zero, and

the remaining parameters were estimated by minimization of S

228



Initial values of the 0-parameters were chosen from the results of

Fuguitt and Hawkins (1945, 1947), Box and co-workors (1,973), and the present

authors (1976). initial variance estimates a were calculated from repli-

cate data available in Table 4, and zeros were inserted initially as covarianoes.

The model was integrated, for each experiment, by the method of Guertin

et &1 (1977) with 6 mesh points. The coefficients in Equation (9) were com-

puted as described in the Appendix, with first-order sencitivities 8ýu/80

computed by the method of Stewart and Sorensen (1976).

A first minimization, with roaction 5 omitted, converged within 20 itera-

tions. This gave 0- 41,06 with parameter estimates as shown in Table 5.

The confidence intervals show the G's to be estimated quite precisely. The

a are estimated less precisely, as anticipated from the limited number of

data on several combinations of responses. The deviations of the data from

the fitted model are shown in Table 6.

A second minimization of a was done with the full 5-reaction model.

This calculation converged to a very flat minimum at S - 34.09, with param-

eter estimates as shown in Table 5. The deviations of the data from this

fitted model are also shown in Table 6.

The 5-reaction modcl is better able to describe the polymer yields from

o-pinene at short times, as can be seen in Table 6. We can also test the

significance of the added parameter 85 by use of the confidence intervals.5I
Table 5 gives 85 - -11.945 1 0.698, based on Equation (14)1 this implies the

limits (I ± 0.698) exp(-1l.945) for k, with the alternate prior p(k 5) - c.

Hence, the 95% confidaent interval for k5 does not include zero.

on the other hand, Equations (9) and (13) give the following approximate

expressLon for the 95% ocnfidence region of the 20 fi.tted parameters of the

5-reaction models
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2
- 34.09 < x(0.05) 31.41.

All v Values such that S() < 65.50 lie within this estimated 95% joint

confidence region. By this criterion# the model with k5 - 0 is acceptable.

However, am indicated earlier, Equation (14) is more reliable than (13). From

this, and a study of the residuals, we conclude that the 5-reaction model is

to be preferred.
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APPENDIX: DERIVATIVES OF S

The matrices a are real and symmetric; furthermore, S is defined only

when these matrices are positive defitte' The following derivative relations

then holds

a In )0 ii
ac -(2-8 i)a< i (Al)uij
iji -

- ik ZJ it kJ L k(2
a -- - • - )lc au + %a uk -C k. W)

DoukA

The relations for second derivatives follow by combination of (Al) and (A2) o

a I• n la . -J(2 .a)( - 6H)(a Ou j + a kJ J _ , Z <

(A3)
a 2 Ui j

U J •(2 - 8k)(2 - 8a)

ac o k a
i! •aust ukZ

is tk it sk ) IJ ik o, tj + t NJ
+0 a) a (a a +CFa

is tA it at kJ it ke tj kt i+ (a u a u + r ,u a ) a + a u (a; aouJ +a O au Cl))

X < k , t < s. (M4)

An indicated earlier, if response h is absent from experiment u , the

elements a and aUjh are replaced by the constant dummy values 6hj

Note also that the symmetry of a has been used to express these deriva-

tives in terms of elements on and below the diagonal.

The derivatives required for Equation (9) are obtained as follows:

S E u Z j (2- • a " rui uj (A5)
r u Ji r

2 -u 6uJa (A6)

r v u iJi r v
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___ auaj iUr Z u i ji k r

aM:L In jg -MU_

aacli

u i j Bas -•t •ui {uj (

r. V V U :

;•iEqutins A6, -(7) 1nd l i.) evlae at 80 an £•0 prvie h 8

2 ±j.ia 2 Inas ,. a2 _1n V L aul
Wi (Ml ______+

at k at Bk9 u ust ukk

2 i

!;i ficient matrix A of the normal equations. Equations (A5) and (Ae) give the

'The residuals u and Cu are expressed am functions of~ e by use
of Equatron (1). The noderimativo in Equation (A6) is expanded to givet

a-2 - (cuicuj ) "ui v ~.

a+ ae

Toe Eqationd().Thderivative ten arEqiuorantion tMe dat exarded wel fite

compare Solutions 1 and 2 in Table 3. Be !

Bf the experiments have different weights wB as in Table 4, then

Tui s and its deritiatves should be multiplied by wf throughout the

developiaent. Ah usual, the matrix a is defined for experiments of unit

weight.
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Table i. Hxample. of Data Structges with m m 4 and n - 8

La. Rectangular lb,-Bloak-rectanaular l0. Irregular

u Yul Yu2 Yu3 Yu4 Yul Yu2 Yu3 Yu4 Yul Yu2 Yu3 Yu4

1 + + + + + + + + +

2 + + + + + + + + + +

3 + + + + + + + +

A 4 + + + + + + +

5 + + + + + + + +

•'6 . . . . + +"'

7 + + + + + + + + +
6 + ++ + 4- +

Table 2. Data for Example 1, from Box and Drapge (1973)

tu Yul Yu2 ¥u3
0.5 0.959 0,025 0.028

i0,5 0 .914 0 .063. 0 .000

1. 0.855 0.152 0.068

16. 0.785 0.197 0.096

S2. 0.628 0.130 0.090
)2. 0.617 0.249 0.118

"•4. 0.480 0.184 0.374

n'14. 0.423 0.298 0.358

•;8. 0.166 0.147 0.651

18. 0.205 0.050 0.684

16, 0.034 0.000 0.899

i•16. 0.054 0.047 0.991
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Table 3. Parameter Values for Zxgnple 1

Initial Solution 1 Solution 2 Solution 3
Parameter Value Eqs. (8.14)* (811 rgqe. (.L8422)*

61 -2.3026 -1.572310.0567 -1.5723*o.0558 -1.5723±0.0800

62 0. -0.702340.1374 -0.7023*0.1346 -0.7023±o.1931

0.01 (0.76±0.52) 10 (0.76±0.53) 00 0.76 lO1
-3 -3 -3021 0. -(0.50±0.63) 10 -(0,50±0.63) 10 -0.50 10

-3 3-3a= 22 O.01 (1.86tl.28) 10- (1.86±1.29) 10" 1.86 10"

031 0. (0.32±0.41) 10 (0.32±0.41) 10 0,32 10
-31-

a32 o (0.40±0.62) 10 -3 (0.40±0.62) 10 0.40 103

a3 0.01 (0.7%o,054) l103 (0.77±0.54) lo"3 0.77 70"3

All intorvals are 95% highest posterior density regions. In Solution 3, the

intervals art computed from the normal equations with "residual mean square"

jv(6) j/(n-2) and n-.2 -10 residual degrees of freedom. In Solution I, the

second-derivative ters of Equation (AI0) are included.
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Table 4. Data for Exaplo 2. from Fuui~ttand Hawkins J1945,1947)

Normalized yields, weight percent

Expt. Feed T, C, tUin Yul Yu2 Yu3 Yu4Iu
(A) (A+B) (A+E+C) (E)

1 A 189.5 1230. 1 88.3 96,2 2.2
2* A 189.5 1230. 1 88.2 *** 95.7 13
3 A 189.5 3060. 2 76.4 *** 92.7 2.8
4 A 189.5 4920. 2 64.8 88.9 5.8
5 A 189.5 7800. 2 50.3 *** 84.7 9.3
6 A 189.5 10680. 2 37.5 *** 82.0 12.0
7 A 189.5 15030. 2 45.9 *** 77.1 17.0
8, A 189.5 22620. 2 14.0 73.9 21.0
9 A 204.5 440. 2 86.6 95.3 .6

10 A 204.5 825. 2 75.0 *** 91.5 1.6
11 A 204.5 1200. 2 66.0 *** 88.8 3.4
12 A 204.5 1500. 2 59.4 *** 86.4 5.1
13 A 204.5 2040. 2 48.9 *** 83.0 8.3
14 A 204.5 3060. 2 32.8 *** 77.8 13.8
15 A 204.5 6060. 2 11.5 *** 70.4 22.5
16 A 189.5 36420. 2 4.5 7.4 70.5 25.7
17 A 204.5 16020. 2 - 3.1 66.2 28.6
18 A 225.0 3000. 1 - 3.0 66.0 28.0
19* A 225.0 3000. 1 - 4.0 66.0 28.0
20 A 245.0 630. 1 - 4.0 65.0 27.0
21* A 245.0 630. 1 - 5.0 65.0 27.0
22 A 265.0 120. 1 - 7.0 65.0 23.0
23* A 265.0 120. 1 - 7.0 65.0 24.0
24 A 285.0 30. 1 - 11.0 66.0 19.0
25* A 285.0 30. 1 - 9.0 66.0 19.0
26 D 189.5 1020. 1 - - - 80.0
27 D 189.5 3990. 1 - - - 87.3
28* D 189.5 3990. L - - - 87.3
29 D 189.5 6780. 1 - - - 87.5
30 D 189.5 8220. 1 - - - 86.5
31 D 189.5 13260. 1 - - - 88.532 D 189.5 14760. 1 --- 89.6 i
33 D 204.5 3480. 1 --- 87.5 i

340 1 - - - 86.8
35 E 189.5 8880. 1 - - - 91.9
36* E 189.5 8880. 1 - - - 92.0
37 E 189.5 14340. 1 - - - 89.8
38 E 189.5 23400. 1 - - - 89.7
39* E 189.5 23400. i--- 88.5
40 B 204.5 5700. 1 --- 88.4
41 E 204.5 8100. 1 --- 87.9

Replicate of the preceding test.
**

wu is the number of independent tests combined to obtain each observation yui"

Originally reported but not observed; see text.

- No value reported.
tý' p236



Table 5, Parageters for a-Pinene Conversion
S* *

Estimates for Estimates for
Parameter 4-Reaction Model 5-Reaotion Model

61 -8.331 1 .024 -8.333 1 .025

e2  -8.898 ± .029 -8.961 ± .054

03 -8.242 ± .341 -8.196 ..325

94 -5,389 ± .081 -5.438 ± .087

05 -11.945 1 .698

e 19814. 1 428. 19785. ± 457.

6 7 20828. ± 474. 20890. ± 536.

6 a 17336. 1 4079, 17212. 1 4203,

0 9 10321. 1 915. 1032.2. 1 918.

6 10 19957. *

611 269. ± 83. 279. ± 83.

0 12 -1976. 1 64. -1985. ± 63. .

3 -336. 1± 950 -259. ± 958.

e1  -3873. 1 1624. -3781. ± 1555.

o11 .696 ± .419 .784 ± .492

021 .000 ** .000 **

a2 2  .391 ± .359 .376 ± .348

a31 .358 ± .412 .426 ± .456

032 .000 ** .000

CT33 .706 t .426 .732 ± .444

a 41-248 ± .344 -.294 ± .354

01 41 .000 **.000

043 -. 504 ± .317 -. 493 ± .314

044 .744 ± .304 .654 ± 282

95% highest postexior density intervals caloulated from Equation (14).

Posterior estimates were not obtained for these parameters.

237

n n n n I i .. . • - •• .......ii .... i.....• .... . .. i- n n n n~ 171,



Table 6. Final Reuidual3 ui() for Example 2.

4-Reaotkon Model 5-Reaction Model

SExpt., €ul -ul 'u3 Au •ul eu2 €u3 Au
u (A) (A*.R (A+B+c) CE) (A) (A+B) (A+B+C) (E)

1 -1.32 - -. 37 2.00 -1.22 - -. 26 1.69
2 -1.42 - -. 87 1.10 -1.32 - -. 76 .79
3 .26 - .24 .88 .43 - .43 •45
4 .28 - -. 15 1.10 .45 - .06 .72
5 .38 - -. 04 .22 .48 - .12 -. 04
6 -1.13 - .70 -. 81 -1.12 - .78 -. 96
7 -. 32 - -. 26 -. 17 -. 43 - -. 29 -. 18
a .66 - .89 -1.06 .47 - .74 -. 92
9 "as - .21 .30 1.00 - .35 -. 11

10 .10 - -. 17 .14 .24 - .04 -. 38
14 -31 - -. 07 .16 .45 - .15 -. 34
12 -27 - -. 51 .23 .38 - -. 29 -. 23
13 -. 04 -7 .86 .42 .01 - -. 69 .08
14 -144 - -. 56 .90 -1.52 - -1.49 .75
18 -. 47 . -1.47 3 -. 70 - -1.61 .77
16 .60 .78 .98 -. 36 -44 .72 .74 -. 14
17 - -. 12 -. 67 .34 - -. 07 -. 87 .50
18 - 8.1 .51 -. 48 - -. 76 38 -. 39
19 - .19 .51 -. 48 - .24 .38 -. 39
20 - -. 89 .29 -. 56 - -. 88 .22 -. 47
21 - .11 .29 -. 56 - .13 .22 -. 47
22 - -. 54 -. 31 -. 31 - -. 58 -. 32 -,28
23 - -. 54 -. 31 .63 - -. 58 -. 32 .72
24 - 1.54 .49 -. 15 - 1.51 .58 -. 20
25 - -. 46 .49 -. 15 - -. 49 .58 -. 20
26 - - - 1.12 - - - 1.95
27 - - - -. 92 - - - -. 61
28 - - - -. 92 - - - -. 61
29 - - - -1.31 - - - -1.16
30 - - - -2.37 - - - -2.27
31 - - - -. 41 - - - -. 42
32 - - - .90 - - - .86
33 - - 1.67 - - - .72
34 - - - -. 31 - - - .40
35 - - - 1.26 - - - 1.17
36 - - - 1.36 - - - 1.27
37 - - .24 - - - .16
38 - - - .91 - - - .8039 - - --. 29 ... - 40
40 - - -. 42 - - - .27
41 - - .51 - - .35
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